Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362584772> ?p ?o ?g. }
- W4362584772 endingPage "123712" @default.
- W4362584772 startingPage "123712" @default.
- W4362584772 abstract "Wastewater pollution with organic dyes has generated great concern in society due to the hazardous effects these contaminants pose to humans and aquatic life. In this view, the application of the adsorption process using nanoadsorbents has been a promising alternative due to the relatively low cost, high efficiency and simple operation. In addition, nanozeolites were highlighted in scientific literature due to their properties (surface area, porosity, ion exchange capacity, chemical and thermal stability), being useful for dye removal from wastewater. However, time and cost in experimental procedures are required to find optimal conditions for the adsorption of dyes onto these nanozeolites. Therefore, machine learning methods have emerged as a suitable tool for the prediction of the adsorption capacity of the nanoadsorbents in an efficient manner, being capable of recognizing patterns in the process and addressing the process feasibility. In this context, the present work aims to develop a machine learning (ML) study of the adsorption of organic dye onto nanozeolites and to identify the main variables that affect the adsorption capacity and removal of organic dye from wastewater. Thus, four ML algorithms (RF, LGB, XBG, and ANN) were tested as a regression model. This study revealed that XBG showed the best performance in comparison to the other models, being suitable in the prediction of adsorption capacities of nanozeolites for cationic dyes. Additionally, an exploratory analysis and hypothesis testing confirmed the great effect of the dye and nanoadsorbent concentrations, contact time and pH in the adsorption process. Therefore, the XGB proved to be capable to address the predicted adsorption capacity of nanozeolite from a relatively small dataset, being characterized as a starting point before experimental procedures and scale-up of wastewater treatment concerned with organic dye removal." @default.
- W4362584772 created "2023-04-06" @default.
- W4362584772 creator A5058682075 @default.
- W4362584772 creator A5072989915 @default.
- W4362584772 creator A5080372238 @default.
- W4362584772 creator A5085665005 @default.
- W4362584772 date "2023-06-01" @default.
- W4362584772 modified "2023-10-04" @default.
- W4362584772 title "Adsorption of organic dyes onto nanozeolites: A machine learning study" @default.
- W4362584772 cites W2010738472 @default.
- W4362584772 cites W2195671126 @default.
- W4362584772 cites W2758402570 @default.
- W4362584772 cites W2768697121 @default.
- W4362584772 cites W2775161276 @default.
- W4362584772 cites W2792738006 @default.
- W4362584772 cites W2794687454 @default.
- W4362584772 cites W2807437772 @default.
- W4362584772 cites W2884737799 @default.
- W4362584772 cites W2898203174 @default.
- W4362584772 cites W2901997077 @default.
- W4362584772 cites W2912161332 @default.
- W4362584772 cites W2934599455 @default.
- W4362584772 cites W2947055553 @default.
- W4362584772 cites W2952441934 @default.
- W4362584772 cites W2953859836 @default.
- W4362584772 cites W2968764312 @default.
- W4362584772 cites W2994944854 @default.
- W4362584772 cites W3012358853 @default.
- W4362584772 cites W3015612898 @default.
- W4362584772 cites W3015765079 @default.
- W4362584772 cites W3024525656 @default.
- W4362584772 cites W3082813113 @default.
- W4362584772 cites W3085693606 @default.
- W4362584772 cites W3109366133 @default.
- W4362584772 cites W3114301550 @default.
- W4362584772 cites W3145062060 @default.
- W4362584772 cites W3148057016 @default.
- W4362584772 cites W3156310171 @default.
- W4362584772 cites W3186570958 @default.
- W4362584772 cites W3195021239 @default.
- W4362584772 cites W3200608662 @default.
- W4362584772 cites W4252686934 @default.
- W4362584772 cites W4310191472 @default.
- W4362584772 cites W4310758439 @default.
- W4362584772 cites W4311421745 @default.
- W4362584772 cites W4321202073 @default.
- W4362584772 doi "https://doi.org/10.1016/j.seppur.2023.123712" @default.
- W4362584772 hasPublicationYear "2023" @default.
- W4362584772 type Work @default.
- W4362584772 citedByCount "6" @default.
- W4362584772 countsByYear W43625847722023 @default.
- W4362584772 crossrefType "journal-article" @default.
- W4362584772 hasAuthorship W4362584772A5058682075 @default.
- W4362584772 hasAuthorship W4362584772A5072989915 @default.
- W4362584772 hasAuthorship W4362584772A5080372238 @default.
- W4362584772 hasAuthorship W4362584772A5085665005 @default.
- W4362584772 hasConcept C111919701 @default.
- W4362584772 hasConcept C127413603 @default.
- W4362584772 hasConcept C150077022 @default.
- W4362584772 hasConcept C150394285 @default.
- W4362584772 hasConcept C151730666 @default.
- W4362584772 hasConcept C178790620 @default.
- W4362584772 hasConcept C183696295 @default.
- W4362584772 hasConcept C185592680 @default.
- W4362584772 hasConcept C21880701 @default.
- W4362584772 hasConcept C2779343474 @default.
- W4362584772 hasConcept C39432304 @default.
- W4362584772 hasConcept C41008148 @default.
- W4362584772 hasConcept C42360764 @default.
- W4362584772 hasConcept C43617362 @default.
- W4362584772 hasConcept C528095902 @default.
- W4362584772 hasConcept C548081761 @default.
- W4362584772 hasConcept C86803240 @default.
- W4362584772 hasConcept C87717796 @default.
- W4362584772 hasConcept C94061648 @default.
- W4362584772 hasConcept C98045186 @default.
- W4362584772 hasConceptScore W4362584772C111919701 @default.
- W4362584772 hasConceptScore W4362584772C127413603 @default.
- W4362584772 hasConceptScore W4362584772C150077022 @default.
- W4362584772 hasConceptScore W4362584772C150394285 @default.
- W4362584772 hasConceptScore W4362584772C151730666 @default.
- W4362584772 hasConceptScore W4362584772C178790620 @default.
- W4362584772 hasConceptScore W4362584772C183696295 @default.
- W4362584772 hasConceptScore W4362584772C185592680 @default.
- W4362584772 hasConceptScore W4362584772C21880701 @default.
- W4362584772 hasConceptScore W4362584772C2779343474 @default.
- W4362584772 hasConceptScore W4362584772C39432304 @default.
- W4362584772 hasConceptScore W4362584772C41008148 @default.
- W4362584772 hasConceptScore W4362584772C42360764 @default.
- W4362584772 hasConceptScore W4362584772C43617362 @default.
- W4362584772 hasConceptScore W4362584772C528095902 @default.
- W4362584772 hasConceptScore W4362584772C548081761 @default.
- W4362584772 hasConceptScore W4362584772C86803240 @default.
- W4362584772 hasConceptScore W4362584772C87717796 @default.
- W4362584772 hasConceptScore W4362584772C94061648 @default.
- W4362584772 hasConceptScore W4362584772C98045186 @default.
- W4362584772 hasLocation W43625847721 @default.
- W4362584772 hasOpenAccess W4362584772 @default.