Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362584945> ?p ?o ?g. }
- W4362584945 abstract "Many applications that could benefit from the underwater optical wireless communication technique face challenges in using this technology due to the substantial, varying attenuation that affects optical signal transmission through waterbodies. This research demonstrated that convolutional neural networks (CNNs) could readily address these problems. A modified CNN model was proposed to recover the original data of a non-return to zero on–off keying modulated signal transmitted optically through a tank full of Gulf seawater. A comparison between the proposed CNN model and a conventional fixed-threshold decoder (FTD) demonstrates the excellent performance of the proposed CNN model, which improved the bit error ratio (BER), signal-to-noise ratio (SNR), and effective channel length. The BER of the optical signals that are transmitted at powers of 24, 26, and 27 dBm and a bit rate of 10 Mbit/s at a distance of 3 m from the transmitter when FTD is used is 7.826 × 10−7, 5.049 × 10−8, and 8.38 × 10−10, respectively. When the CNN decoder is used at the same distance and powers, the BER is 6.23 × 10−14, 1.44 × 10−16, and 2.69 × 10−18, respectively. In conclusion, the BER decreased by about seven orders of magnitude, the effective channel length increased by four times, and the SNR decreased by about 20 dB. The simplicity of the proposed CNN decoder is independent of the prior knowledge of the channel conditions. Furthermore, the magnificent obtained results make the proposed CNN decoder an ideal substitute for ordinary underwater optical wireless communication decoders." @default.
- W4362584945 created "2023-04-06" @default.
- W4362584945 creator A5013879277 @default.
- W4362584945 creator A5040974129 @default.
- W4362584945 creator A5048412708 @default.
- W4362584945 date "2023-04-01" @default.
- W4362584945 modified "2023-10-11" @default.
- W4362584945 title "Underwater optical wireless communication system performance improvement using convolutional neural networks" @default.
- W4362584945 cites W2362851156 @default.
- W4362584945 cites W2483085136 @default.
- W4362584945 cites W2547868186 @default.
- W4362584945 cites W2579337298 @default.
- W4362584945 cites W2724334266 @default.
- W4362584945 cites W2735521527 @default.
- W4362584945 cites W2762327856 @default.
- W4362584945 cites W2765760859 @default.
- W4362584945 cites W2790745069 @default.
- W4362584945 cites W2900780924 @default.
- W4362584945 cites W2907239809 @default.
- W4362584945 cites W2908696927 @default.
- W4362584945 cites W2912136746 @default.
- W4362584945 cites W2935145387 @default.
- W4362584945 cites W2939556008 @default.
- W4362584945 cites W2963190722 @default.
- W4362584945 cites W2963523009 @default.
- W4362584945 cites W2975526238 @default.
- W4362584945 cites W2999537067 @default.
- W4362584945 cites W3012879799 @default.
- W4362584945 cites W3013375064 @default.
- W4362584945 cites W3081012748 @default.
- W4362584945 cites W3102329359 @default.
- W4362584945 cites W3120808962 @default.
- W4362584945 cites W3130255384 @default.
- W4362584945 cites W3140854437 @default.
- W4362584945 cites W3155669789 @default.
- W4362584945 cites W3160552739 @default.
- W4362584945 cites W3164200108 @default.
- W4362584945 cites W3174146878 @default.
- W4362584945 cites W3176617889 @default.
- W4362584945 cites W3208221175 @default.
- W4362584945 cites W4214668428 @default.
- W4362584945 cites W4225788982 @default.
- W4362584945 cites W4283824002 @default.
- W4362584945 cites W4285499854 @default.
- W4362584945 cites W4304184091 @default.
- W4362584945 cites W4307644975 @default.
- W4362584945 cites W4309701560 @default.
- W4362584945 cites W4313409721 @default.
- W4362584945 cites W4313473044 @default.
- W4362584945 doi "https://doi.org/10.1063/5.0142823" @default.
- W4362584945 hasPublicationYear "2023" @default.
- W4362584945 type Work @default.
- W4362584945 citedByCount "2" @default.
- W4362584945 countsByYear W43625849452023 @default.
- W4362584945 crossrefType "journal-article" @default.
- W4362584945 hasAuthorship W4362584945A5013879277 @default.
- W4362584945 hasAuthorship W4362584945A5040974129 @default.
- W4362584945 hasAuthorship W4362584945A5048412708 @default.
- W4362584945 hasBestOaLocation W43625849451 @default.
- W4362584945 hasConcept C111368507 @default.
- W4362584945 hasConcept C11413529 @default.
- W4362584945 hasConcept C120665830 @default.
- W4362584945 hasConcept C121332964 @default.
- W4362584945 hasConcept C127162648 @default.
- W4362584945 hasConcept C127313418 @default.
- W4362584945 hasConcept C127413603 @default.
- W4362584945 hasConcept C129404179 @default.
- W4362584945 hasConcept C13944312 @default.
- W4362584945 hasConcept C154945302 @default.
- W4362584945 hasConcept C157899210 @default.
- W4362584945 hasConcept C184652730 @default.
- W4362584945 hasConcept C24326235 @default.
- W4362584945 hasConcept C2776542216 @default.
- W4362584945 hasConcept C2781305180 @default.
- W4362584945 hasConcept C41008148 @default.
- W4362584945 hasConcept C47798520 @default.
- W4362584945 hasConcept C555944384 @default.
- W4362584945 hasConcept C56296756 @default.
- W4362584945 hasConcept C57273362 @default.
- W4362584945 hasConcept C761482 @default.
- W4362584945 hasConcept C76155785 @default.
- W4362584945 hasConcept C81363708 @default.
- W4362584945 hasConcept C98083399 @default.
- W4362584945 hasConceptScore W4362584945C111368507 @default.
- W4362584945 hasConceptScore W4362584945C11413529 @default.
- W4362584945 hasConceptScore W4362584945C120665830 @default.
- W4362584945 hasConceptScore W4362584945C121332964 @default.
- W4362584945 hasConceptScore W4362584945C127162648 @default.
- W4362584945 hasConceptScore W4362584945C127313418 @default.
- W4362584945 hasConceptScore W4362584945C127413603 @default.
- W4362584945 hasConceptScore W4362584945C129404179 @default.
- W4362584945 hasConceptScore W4362584945C13944312 @default.
- W4362584945 hasConceptScore W4362584945C154945302 @default.
- W4362584945 hasConceptScore W4362584945C157899210 @default.
- W4362584945 hasConceptScore W4362584945C184652730 @default.
- W4362584945 hasConceptScore W4362584945C24326235 @default.
- W4362584945 hasConceptScore W4362584945C2776542216 @default.
- W4362584945 hasConceptScore W4362584945C2781305180 @default.
- W4362584945 hasConceptScore W4362584945C41008148 @default.
- W4362584945 hasConceptScore W4362584945C47798520 @default.