Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362588812> ?p ?o ?g. }
- W4362588812 endingPage "526" @default.
- W4362588812 startingPage "509" @default.
- W4362588812 abstract "Abstract To understand the effects of the machine learning models and the spatial resolutions on the prediction accuracy of bigeye tuna ( Thunnus obesus ) fishing grounds, logbook data of 13 Chinese longliners operating in the high seas of the Atlantic Ocean from 2016 to 2019 were collected. The environmental factors were selected based on the correlation analysis of calculation of catch per unit effort (CPUE) and the marine vertical environmental factors. Five machine learning models: random forest, gradient‐boosting decision tree, K ‐nearest neighbor, logistic regression and stacking ensemble learning (STK) within four spatial resolutions of .5° × .5°, 1° × 1°, 2° × 2° and 5° × 5° grids were constructed and compared. Results showed that (1) the prediction performance of STK model was the best, with the highest scores of the four evaluation indexes, accuracy (Acc), precision (P), recall (R), and F1‐score (F1), and the highest correct prediction rate for predicting “high CPUE fishing ground”; (2) models within the spatial resolution of 1° × 1° grids predicted the better results compared with .5° × .5°, 2° × 2° and 5° × 5° grids; (3) the vertical environmental factors selected based on the correlation analysis could be used as reliable predictors in the models. Results suggested that using STK within 1° × 1° grids could improve the generalization performance and prediction accuracy for predicting the bigeye tuna fishing grounds in the Atlantic Ocean." @default.
- W4362588812 created "2023-04-06" @default.
- W4362588812 creator A5040538385 @default.
- W4362588812 creator A5053204257 @default.
- W4362588812 creator A5063794907 @default.
- W4362588812 creator A5068788906 @default.
- W4362588812 creator A5069282514 @default.
- W4362588812 creator A5083581319 @default.
- W4362588812 date "2023-04-02" @default.
- W4362588812 modified "2023-10-17" @default.
- W4362588812 title "Comparison of machine learning models within different spatial resolutions for predicting the bigeye tuna fishing grounds in tropical waters of the Atlantic Ocean" @default.
- W4362588812 cites W1584308190 @default.
- W4362588812 cites W166822278 @default.
- W4362588812 cites W1971508473 @default.
- W4362588812 cites W1985277443 @default.
- W4362588812 cites W1992238482 @default.
- W4362588812 cites W1993634114 @default.
- W4362588812 cites W2015015171 @default.
- W4362588812 cites W2031946578 @default.
- W4362588812 cites W2037723922 @default.
- W4362588812 cites W2070493638 @default.
- W4362588812 cites W2103647733 @default.
- W4362588812 cites W2117994187 @default.
- W4362588812 cites W2136132422 @default.
- W4362588812 cites W2158073743 @default.
- W4362588812 cites W2271643717 @default.
- W4362588812 cites W2338479108 @default.
- W4362588812 cites W2604699205 @default.
- W4362588812 cites W2605874660 @default.
- W4362588812 cites W2746356283 @default.
- W4362588812 cites W2794911734 @default.
- W4362588812 cites W2802750726 @default.
- W4362588812 cites W2885245903 @default.
- W4362588812 cites W2979037798 @default.
- W4362588812 cites W3003642976 @default.
- W4362588812 cites W3008482503 @default.
- W4362588812 cites W3015952672 @default.
- W4362588812 cites W3021390664 @default.
- W4362588812 cites W3024199555 @default.
- W4362588812 cites W3029484710 @default.
- W4362588812 cites W3135217141 @default.
- W4362588812 cites W3194848763 @default.
- W4362588812 cites W3207278100 @default.
- W4362588812 cites W4292395116 @default.
- W4362588812 cites W2343445722 @default.
- W4362588812 doi "https://doi.org/10.1111/fog.12643" @default.
- W4362588812 hasPublicationYear "2023" @default.
- W4362588812 type Work @default.
- W4362588812 citedByCount "1" @default.
- W4362588812 countsByYear W43625888122023 @default.
- W4362588812 crossrefType "journal-article" @default.
- W4362588812 hasAuthorship W4362588812A5040538385 @default.
- W4362588812 hasAuthorship W4362588812A5053204257 @default.
- W4362588812 hasAuthorship W4362588812A5063794907 @default.
- W4362588812 hasAuthorship W4362588812A5068788906 @default.
- W4362588812 hasAuthorship W4362588812A5069282514 @default.
- W4362588812 hasAuthorship W4362588812A5083581319 @default.
- W4362588812 hasConcept C111368507 @default.
- W4362588812 hasConcept C119857082 @default.
- W4362588812 hasConcept C127313418 @default.
- W4362588812 hasConcept C2778072691 @default.
- W4362588812 hasConcept C2780040469 @default.
- W4362588812 hasConcept C2780532849 @default.
- W4362588812 hasConcept C2909208804 @default.
- W4362588812 hasConcept C39432304 @default.
- W4362588812 hasConcept C41008148 @default.
- W4362588812 hasConcept C45942800 @default.
- W4362588812 hasConcept C505870484 @default.
- W4362588812 hasConcept C514101110 @default.
- W4362588812 hasConcept C51614570 @default.
- W4362588812 hasConcept C86803240 @default.
- W4362588812 hasConceptScore W4362588812C111368507 @default.
- W4362588812 hasConceptScore W4362588812C119857082 @default.
- W4362588812 hasConceptScore W4362588812C127313418 @default.
- W4362588812 hasConceptScore W4362588812C2778072691 @default.
- W4362588812 hasConceptScore W4362588812C2780040469 @default.
- W4362588812 hasConceptScore W4362588812C2780532849 @default.
- W4362588812 hasConceptScore W4362588812C2909208804 @default.
- W4362588812 hasConceptScore W4362588812C39432304 @default.
- W4362588812 hasConceptScore W4362588812C41008148 @default.
- W4362588812 hasConceptScore W4362588812C45942800 @default.
- W4362588812 hasConceptScore W4362588812C505870484 @default.
- W4362588812 hasConceptScore W4362588812C514101110 @default.
- W4362588812 hasConceptScore W4362588812C51614570 @default.
- W4362588812 hasConceptScore W4362588812C86803240 @default.
- W4362588812 hasFunder F4320321001 @default.
- W4362588812 hasFunder F4320335777 @default.
- W4362588812 hasIssue "6" @default.
- W4362588812 hasLocation W43625888121 @default.
- W4362588812 hasOpenAccess W4362588812 @default.
- W4362588812 hasPrimaryLocation W43625888121 @default.
- W4362588812 hasRelatedWork W2083302546 @default.
- W4362588812 hasRelatedWork W2131543136 @default.
- W4362588812 hasRelatedWork W2441747767 @default.
- W4362588812 hasRelatedWork W2461269583 @default.
- W4362588812 hasRelatedWork W2495824063 @default.
- W4362588812 hasRelatedWork W2513600437 @default.
- W4362588812 hasRelatedWork W2739390397 @default.