Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362593457> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4362593457 endingPage "5410" @default.
- W4362593457 startingPage "5410" @default.
- W4362593457 abstract "Abstract The translational gap of drug and biomarker discovery remains one of the biggest challenges in the pharmaceutical industry. On one hand high throughput screening and omics methods facilitate the generation of in-vitro and in-vivo data of dose-response for a particular drug or combinations. On the other hand, clinical omics techniques allow for the creation of large scale treatment-naive clinical datasets, with the TCGA and CPTAC as prominent examples. However, the question of which disease model best represents the response/resistance mechanisms of an oncology patient remains challenging. In this study we present a machine learning (ML) based computational technique for integrating omics from preclinical dose-response studies with clinical treatment-naive samples to create putative predictive biomarkers, and exemplify its application 2 case studies - PARP or AKT inhibitors. We utilize the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) as a resource for in-vitro dose response data for PARPi and AKTi, coupled with multi-omic molecular data. We utilize the treatment naive molecular characterization from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data of Breast cancer patients. Multi-omic analysis of these datasets derived 2 putative predictive biomarkers for PARPi and AKTi. The multi-omic analysis resembles the data availability at the critical drug development stage of transition from preclinical response models to a clinical trial. These biomarkers are tested on a validation dataset obtained from the iSPY adaptive clinical trial and achieve superior results compared to the original enrolment biomarkers and even the retrospectively derived biomarkers. This study presents a novel computational approach to bridge the gap between preclinical dose-response and clinical datasets and suggests an efficient way to discover predictive biomarkers based on data accessible in a preclinical setting. Citation Format: David Futorian, Oren Fischman, Gali Arad, Nitzan Simchi, Omri Erez, Eran Seger, Rozanne Groen, Kirill Pevzner. Predictive biomarker discovery method to bridge the gap between preclinical disease model dose-response and clinical trials. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5410." @default.
- W4362593457 created "2023-04-06" @default.
- W4362593457 creator A5011914141 @default.
- W4362593457 creator A5032273885 @default.
- W4362593457 creator A5042190947 @default.
- W4362593457 creator A5042604922 @default.
- W4362593457 creator A5064237988 @default.
- W4362593457 creator A5074824635 @default.
- W4362593457 creator A5075979511 @default.
- W4362593457 creator A5085777132 @default.
- W4362593457 date "2023-04-04" @default.
- W4362593457 modified "2023-09-25" @default.
- W4362593457 title "Abstract 5410: Predictive biomarker discovery method to bridge the gap between preclinical disease model dose-response and clinical trials" @default.
- W4362593457 doi "https://doi.org/10.1158/1538-7445.am2023-5410" @default.
- W4362593457 hasPublicationYear "2023" @default.
- W4362593457 type Work @default.
- W4362593457 citedByCount "0" @default.
- W4362593457 crossrefType "journal-article" @default.
- W4362593457 hasAuthorship W4362593457A5011914141 @default.
- W4362593457 hasAuthorship W4362593457A5032273885 @default.
- W4362593457 hasAuthorship W4362593457A5042190947 @default.
- W4362593457 hasAuthorship W4362593457A5042604922 @default.
- W4362593457 hasAuthorship W4362593457A5064237988 @default.
- W4362593457 hasAuthorship W4362593457A5074824635 @default.
- W4362593457 hasAuthorship W4362593457A5075979511 @default.
- W4362593457 hasAuthorship W4362593457A5085777132 @default.
- W4362593457 hasConcept C104317684 @default.
- W4362593457 hasConcept C124535831 @default.
- W4362593457 hasConcept C126322002 @default.
- W4362593457 hasConcept C128544194 @default.
- W4362593457 hasConcept C141231307 @default.
- W4362593457 hasConcept C142724271 @default.
- W4362593457 hasConcept C143998085 @default.
- W4362593457 hasConcept C157585117 @default.
- W4362593457 hasConcept C163763905 @default.
- W4362593457 hasConcept C189206191 @default.
- W4362593457 hasConcept C2779134260 @default.
- W4362593457 hasConcept C2780035454 @default.
- W4362593457 hasConcept C2781197716 @default.
- W4362593457 hasConcept C32220436 @default.
- W4362593457 hasConcept C46111723 @default.
- W4362593457 hasConcept C535046627 @default.
- W4362593457 hasConcept C54355233 @default.
- W4362593457 hasConcept C60644358 @default.
- W4362593457 hasConcept C64903051 @default.
- W4362593457 hasConcept C70721500 @default.
- W4362593457 hasConcept C71924100 @default.
- W4362593457 hasConcept C74187038 @default.
- W4362593457 hasConcept C86803240 @default.
- W4362593457 hasConcept C98274493 @default.
- W4362593457 hasConceptScore W4362593457C104317684 @default.
- W4362593457 hasConceptScore W4362593457C124535831 @default.
- W4362593457 hasConceptScore W4362593457C126322002 @default.
- W4362593457 hasConceptScore W4362593457C128544194 @default.
- W4362593457 hasConceptScore W4362593457C141231307 @default.
- W4362593457 hasConceptScore W4362593457C142724271 @default.
- W4362593457 hasConceptScore W4362593457C143998085 @default.
- W4362593457 hasConceptScore W4362593457C157585117 @default.
- W4362593457 hasConceptScore W4362593457C163763905 @default.
- W4362593457 hasConceptScore W4362593457C189206191 @default.
- W4362593457 hasConceptScore W4362593457C2779134260 @default.
- W4362593457 hasConceptScore W4362593457C2780035454 @default.
- W4362593457 hasConceptScore W4362593457C2781197716 @default.
- W4362593457 hasConceptScore W4362593457C32220436 @default.
- W4362593457 hasConceptScore W4362593457C46111723 @default.
- W4362593457 hasConceptScore W4362593457C535046627 @default.
- W4362593457 hasConceptScore W4362593457C54355233 @default.
- W4362593457 hasConceptScore W4362593457C60644358 @default.
- W4362593457 hasConceptScore W4362593457C64903051 @default.
- W4362593457 hasConceptScore W4362593457C70721500 @default.
- W4362593457 hasConceptScore W4362593457C71924100 @default.
- W4362593457 hasConceptScore W4362593457C74187038 @default.
- W4362593457 hasConceptScore W4362593457C86803240 @default.
- W4362593457 hasConceptScore W4362593457C98274493 @default.
- W4362593457 hasIssue "7_Supplement" @default.
- W4362593457 hasLocation W43625934571 @default.
- W4362593457 hasOpenAccess W4362593457 @default.
- W4362593457 hasPrimaryLocation W43625934571 @default.
- W4362593457 hasRelatedWork W2010621698 @default.
- W4362593457 hasRelatedWork W2144891694 @default.
- W4362593457 hasRelatedWork W2245858235 @default.
- W4362593457 hasRelatedWork W2399768324 @default.
- W4362593457 hasRelatedWork W2415613079 @default.
- W4362593457 hasRelatedWork W2507716202 @default.
- W4362593457 hasRelatedWork W2893672911 @default.
- W4362593457 hasRelatedWork W3180780362 @default.
- W4362593457 hasRelatedWork W4317567415 @default.
- W4362593457 hasRelatedWork W4327569469 @default.
- W4362593457 hasVolume "83" @default.
- W4362593457 isParatext "false" @default.
- W4362593457 isRetracted "false" @default.
- W4362593457 workType "article" @default.