Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362595527> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4362595527 endingPage "5374" @default.
- W4362595527 startingPage "5374" @default.
- W4362595527 abstract "Abstract Introduction As total neoadjuvant therapy for locally advanced rectal cancer (LARC) emerged, the possibility of skipping radiotherapy for poorly responsive patients arose. Machine-learning algorithms have focused on the radiopathologic features of tumor segmentation in order to predict responsiveness to radiotherapy. However, in addition to the tumor itself, there are several factors related to responsiveness, such as vasculature affecting hypoxia or MRI-detected extramural vascular invasion status. We aimed to predict poor responders using pretreatment rectal MRI images without segmentation and to identify which factors mainly contribute to the prediction algorithm. Methods Between Jan 1, 2000, and Dec 30, 2020, 689 consecutive patients were retrospectively included in two hospitals. Poor responders were defined by tumor regression grades (TRG) 2 and 3 that were determined through surgical resection. The ResNet-50 model was trained to predict poor responders from pretreatment rectal MRIs (T2-weighted axial, sagittal, and coronal images). We adopted a tenfold cross-validation for training and testing the model and used Gradient-weighted Class Activation Mapping (Grad-CAM) to highlight the important regions in the MRI scans that help predict poor responders. Results The number in each group of TRG was 108 (15.7%), 250 (36.3%), 265 (38.5%), and 66 (9.6%) for TRG0, TRG1, TRG2, and TRG3, respectively. There were 618 patients in the training cohort and 71 patients in the validation cohort. In the training and validation cohort, the accuracy for the prediction of poor responders was 85.6% (area under the curve (AUC) 0.856 [95% CI 0.761-0.950]) and 70.2% (AUC 0.703 [0.682-0.724]), although without segmentation. Our prediction model achieved a sensitivity of 0.724 (95% CI 0.700-0.748), a specificity of 0.684 (0.658-0.710), a positive predictive value of 0.697 (0.656-0.737), and a negative predictive value of 0.708 (0.666-0.751) in the validation cohort. Grad-CAM showed that the most important part of the accurately predicted images to contribute to the prediction was not the tumor (7/355, 1.9%) but the pelvic vasculature (353/355, 99.4%), including iliac vessels, femoral vessels, and presacral plexus, and followed by the mesorectum (38/355, 10.7%). Conclusion The pelvic vasculature contributes more to predicting poor responders to radiotherapy than the tumor itself. Therefore, when creating a prediction model for responsiveness to radiotherapy in LARC, this should be considered. Citation Format: Rumi Shin, Byunho Jo, Inyeop Jang, Cheong-Il Shin, Jin Sun Choi, Seung-Yong Jeong, Seung Chul Heo, Ji Won Park, Min Jung Kim, Tae Hyun Hwang. Why only focus on the tumor?: The crucial role of the extra-tumor environment to predict poor responders for locally advanced rectal cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5374." @default.
- W4362595527 created "2023-04-06" @default.
- W4362595527 creator A5014375228 @default.
- W4362595527 creator A5015152759 @default.
- W4362595527 creator A5015745108 @default.
- W4362595527 creator A5027381296 @default.
- W4362595527 creator A5027668952 @default.
- W4362595527 creator A5040464998 @default.
- W4362595527 creator A5045419849 @default.
- W4362595527 creator A5047165960 @default.
- W4362595527 creator A5082279616 @default.
- W4362595527 creator A5088825456 @default.
- W4362595527 date "2023-04-04" @default.
- W4362595527 modified "2023-09-27" @default.
- W4362595527 title "Abstract 5374: Why only focus on the tumor?: The crucial role of the extra-tumor environment to predict poor responders for locally advanced rectal cancer" @default.
- W4362595527 doi "https://doi.org/10.1158/1538-7445.am2023-5374" @default.
- W4362595527 hasPublicationYear "2023" @default.
- W4362595527 type Work @default.
- W4362595527 citedByCount "0" @default.
- W4362595527 crossrefType "journal-article" @default.
- W4362595527 hasAuthorship W4362595527A5014375228 @default.
- W4362595527 hasAuthorship W4362595527A5015152759 @default.
- W4362595527 hasAuthorship W4362595527A5015745108 @default.
- W4362595527 hasAuthorship W4362595527A5027381296 @default.
- W4362595527 hasAuthorship W4362595527A5027668952 @default.
- W4362595527 hasAuthorship W4362595527A5040464998 @default.
- W4362595527 hasAuthorship W4362595527A5045419849 @default.
- W4362595527 hasAuthorship W4362595527A5047165960 @default.
- W4362595527 hasAuthorship W4362595527A5082279616 @default.
- W4362595527 hasAuthorship W4362595527A5088825456 @default.
- W4362595527 hasConcept C121608353 @default.
- W4362595527 hasConcept C126322002 @default.
- W4362595527 hasConcept C126838900 @default.
- W4362595527 hasConcept C143409427 @default.
- W4362595527 hasConcept C143998085 @default.
- W4362595527 hasConcept C146357865 @default.
- W4362595527 hasConcept C151730666 @default.
- W4362595527 hasConcept C509974204 @default.
- W4362595527 hasConcept C526805850 @default.
- W4362595527 hasConcept C71924100 @default.
- W4362595527 hasConcept C72563966 @default.
- W4362595527 hasConcept C86803240 @default.
- W4362595527 hasConceptScore W4362595527C121608353 @default.
- W4362595527 hasConceptScore W4362595527C126322002 @default.
- W4362595527 hasConceptScore W4362595527C126838900 @default.
- W4362595527 hasConceptScore W4362595527C143409427 @default.
- W4362595527 hasConceptScore W4362595527C143998085 @default.
- W4362595527 hasConceptScore W4362595527C146357865 @default.
- W4362595527 hasConceptScore W4362595527C151730666 @default.
- W4362595527 hasConceptScore W4362595527C509974204 @default.
- W4362595527 hasConceptScore W4362595527C526805850 @default.
- W4362595527 hasConceptScore W4362595527C71924100 @default.
- W4362595527 hasConceptScore W4362595527C72563966 @default.
- W4362595527 hasConceptScore W4362595527C86803240 @default.
- W4362595527 hasIssue "7_Supplement" @default.
- W4362595527 hasLocation W43625955271 @default.
- W4362595527 hasOpenAccess W4362595527 @default.
- W4362595527 hasPrimaryLocation W43625955271 @default.
- W4362595527 hasRelatedWork W2075214100 @default.
- W4362595527 hasRelatedWork W2356105190 @default.
- W4362595527 hasRelatedWork W2364051953 @default.
- W4362595527 hasRelatedWork W2384708512 @default.
- W4362595527 hasRelatedWork W2388808113 @default.
- W4362595527 hasRelatedWork W2392730113 @default.
- W4362595527 hasRelatedWork W2408308928 @default.
- W4362595527 hasRelatedWork W2603773853 @default.
- W4362595527 hasRelatedWork W2887848930 @default.
- W4362595527 hasRelatedWork W3004259476 @default.
- W4362595527 hasVolume "83" @default.
- W4362595527 isParatext "false" @default.
- W4362595527 isRetracted "false" @default.
- W4362595527 workType "article" @default.