Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362601306> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4362601306 endingPage "19" @default.
- W4362601306 startingPage "1" @default.
- W4362601306 abstract "The COVID-19 virus has affected many people around the globe with several issues. Moreover, it causes a worldwide pandemic, and it makes more than one million deaths. Countries around the globe had to announce a complete lockdown when the corona virus causes the community to spread. In real-time, Polymerase Chain Reaction (RT-PCR) test is conducted to detect COVID-19, which is not effective and sensitive. Hence, this research presents the proposed Caviar-MFFO-assisted Deep LSTM scheme for COVID-19 detection. In this research, the COVID-19 cases data is utilized to process the COVID-19 detection. This method extracts the various technical indicators that improve the efficiency of COVID-19 detection. Moreover, the significant features fit for COVID-19 detection are selected using proposed mayfly with fruit fly optimization (MFFO). In addition, COVID-19 is detected by Deep Long Short Term Memory (Deep LSTM), and the Conditional Autoregressive Value at Risk MFFO (Caviar-MFFO) is modeled to train the weight of Deep LSTM. The experimental analysis reveals that the proposed Caviar-MFFO assisted Deep LSTM method provided efficient performance based on the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), and achieved the recovered cases with the minimal values of 1.438 and 1.199, whereas the developed model achieved the death cases with the values of 4.582 and 2.140 for MSE and RMSE. In addition, 6.127 and 2.475 are achieved by the developed model based on infected cases." @default.
- W4362601306 created "2023-04-06" @default.
- W4362601306 creator A5025374278 @default.
- W4362601306 creator A5036649518 @default.
- W4362601306 date "2023-04-05" @default.
- W4362601306 modified "2023-09-24" @default.
- W4362601306 title "Hybrid optimized feature selection and deep learning based COVID-19 disease prediction" @default.
- W4362601306 cites W2093195672 @default.
- W4362601306 cites W2150747312 @default.
- W4362601306 cites W3010699833 @default.
- W4362601306 cites W3012571097 @default.
- W4362601306 cites W3015636560 @default.
- W4362601306 cites W3029517552 @default.
- W4362601306 cites W3034560014 @default.
- W4362601306 cites W3036309913 @default.
- W4362601306 cites W3064374686 @default.
- W4362601306 cites W3083360997 @default.
- W4362601306 cites W3087345531 @default.
- W4362601306 cites W3089168916 @default.
- W4362601306 cites W3093903390 @default.
- W4362601306 cites W3106763172 @default.
- W4362601306 cites W3107979244 @default.
- W4362601306 cites W3114958142 @default.
- W4362601306 cites W3118577024 @default.
- W4362601306 cites W3127596160 @default.
- W4362601306 cites W3129920559 @default.
- W4362601306 cites W3133631487 @default.
- W4362601306 cites W3194278756 @default.
- W4362601306 cites W3198032304 @default.
- W4362601306 cites W4233109902 @default.
- W4362601306 cites W4292854458 @default.
- W4362601306 doi "https://doi.org/10.1080/10255842.2023.2194476" @default.
- W4362601306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37018029" @default.
- W4362601306 hasPublicationYear "2023" @default.
- W4362601306 type Work @default.
- W4362601306 citedByCount "0" @default.
- W4362601306 crossrefType "journal-article" @default.
- W4362601306 hasAuthorship W4362601306A5025374278 @default.
- W4362601306 hasAuthorship W4362601306A5036649518 @default.
- W4362601306 hasConcept C105795698 @default.
- W4362601306 hasConcept C108583219 @default.
- W4362601306 hasConcept C139945424 @default.
- W4362601306 hasConcept C142724271 @default.
- W4362601306 hasConcept C153180895 @default.
- W4362601306 hasConcept C154945302 @default.
- W4362601306 hasConcept C159877910 @default.
- W4362601306 hasConcept C2779134260 @default.
- W4362601306 hasConcept C3008058167 @default.
- W4362601306 hasConcept C33923547 @default.
- W4362601306 hasConcept C41008148 @default.
- W4362601306 hasConcept C524204448 @default.
- W4362601306 hasConcept C71924100 @default.
- W4362601306 hasConceptScore W4362601306C105795698 @default.
- W4362601306 hasConceptScore W4362601306C108583219 @default.
- W4362601306 hasConceptScore W4362601306C139945424 @default.
- W4362601306 hasConceptScore W4362601306C142724271 @default.
- W4362601306 hasConceptScore W4362601306C153180895 @default.
- W4362601306 hasConceptScore W4362601306C154945302 @default.
- W4362601306 hasConceptScore W4362601306C159877910 @default.
- W4362601306 hasConceptScore W4362601306C2779134260 @default.
- W4362601306 hasConceptScore W4362601306C3008058167 @default.
- W4362601306 hasConceptScore W4362601306C33923547 @default.
- W4362601306 hasConceptScore W4362601306C41008148 @default.
- W4362601306 hasConceptScore W4362601306C524204448 @default.
- W4362601306 hasConceptScore W4362601306C71924100 @default.
- W4362601306 hasLocation W43626013061 @default.
- W4362601306 hasLocation W43626013062 @default.
- W4362601306 hasOpenAccess W4362601306 @default.
- W4362601306 hasPrimaryLocation W43626013061 @default.
- W4362601306 hasRelatedWork W2372328424 @default.
- W4362601306 hasRelatedWork W2733060750 @default.
- W4362601306 hasRelatedWork W2738221750 @default.
- W4362601306 hasRelatedWork W2766146978 @default.
- W4362601306 hasRelatedWork W2773120646 @default.
- W4362601306 hasRelatedWork W3156786002 @default.
- W4362601306 hasRelatedWork W4220775285 @default.
- W4362601306 hasRelatedWork W4245792239 @default.
- W4362601306 hasRelatedWork W4317987726 @default.
- W4362601306 hasRelatedWork W3108696707 @default.
- W4362601306 isParatext "false" @default.
- W4362601306 isRetracted "false" @default.
- W4362601306 workType "article" @default.