Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362602218> ?p ?o ?g. }
- W4362602218 abstract "Artificial intelligence-based tools can be leveraged to improve detection and segmentation of brain metastases for stereotactic radiosurgery (SRS). VBrain by Vysioneer Inc. is a deep learning algorithm with recent FDA clearance to assist in brain tumor contouring. We aimed to assess the performance of this tool by various demographic and clinical characteristics among patients with brain metastases treated with SRS.We randomly selected 100 patients with brain metastases who underwent initial SRS on the CyberKnife from 2017 to 2020 at a single institution. Cases with resection cavities were excluded from the analysis. Computed tomography (CT) and axial T1-weighted post-contrast magnetic resonance (MR) image data were extracted for each patient and uploaded to VBrain. A brain metastasis was considered detected when the VBrain- predicted contours overlapped with the corresponding physician contours (ground-truth contours). We evaluated performance of VBrain against ground-truth contours using the following metrics: lesion-wise Dice similarity coefficient (DSC), lesion-wise average Hausdorff distance (AVD), false positive count (FP), and lesion-wise sensitivity (%). Kruskal-Wallis tests were performed to assess the relationships between patient characteristics including sex, race, primary histology, age, and size and number of brain metastases, and performance metrics such as DSC, AVD, FP, and sensitivity.We analyzed 100 patients with 435 intact brain metastases treated with SRS. Our cohort consisted of patients with a median number of 2 brain metastases (range: 1 to 52), median age of 69 (range: 19 to 91), and 50% male and 50% female patients. The primary site breakdown was 56% lung, 10% melanoma, 9% breast, 8% gynecological, 5% renal, 4% gastrointestinal, 2% sarcoma, and 6% other, while the race breakdown was 60% White, 18% Asian, 3% Black/African American, 2% Native Hawaiian or other Pacific Islander, and 17% other/unknown/not reported. The median tumor size was 0.112 c.c. (range: 0.010-26.475 c.c.). We found mean lesion-wise DSC to be 0.723, mean lesion-wise AVD to be 7.34% of lesion size (0.704 mm), mean FP count to be 0.72 tumors per case, and lesion-wise sensitivity to be 89.30% for all lesions. Moreover, mean sensitivity was found to be 99.07%, 97.59%, and 96.23% for lesions with diameter equal to and greater than 10 mm, 7.5 mm, and 5 mm, respectively. No other significant differences in performance metrics were observed across demographic or clinical characteristic groups.In this study, a commercial deep learning algorithm showed promising results in segmenting brain metastases, with 96.23% sensitivity for metastases with diameters of 5 mm or higher. As the software is an assistive AI, future work of VBrain integration into the clinical workflow can provide further clinical and research insights." @default.
- W4362602218 created "2023-04-06" @default.
- W4362602218 creator A5002242540 @default.
- W4362602218 creator A5024308329 @default.
- W4362602218 creator A5033299942 @default.
- W4362602218 creator A5040358775 @default.
- W4362602218 creator A5047821139 @default.
- W4362602218 creator A5048723918 @default.
- W4362602218 creator A5053147085 @default.
- W4362602218 creator A5053183388 @default.
- W4362602218 creator A5065050076 @default.
- W4362602218 creator A5072792947 @default.
- W4362602218 creator A5073216396 @default.
- W4362602218 creator A5073413027 @default.
- W4362602218 creator A5074993378 @default.
- W4362602218 creator A5076932590 @default.
- W4362602218 date "2023-04-04" @default.
- W4362602218 modified "2023-10-01" @default.
- W4362602218 title "Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery" @default.
- W4362602218 cites W1979988663 @default.
- W4362602218 cites W2079502667 @default.
- W4362602218 cites W2556979609 @default.
- W4362602218 cites W2761889757 @default.
- W4362602218 cites W2791822495 @default.
- W4362602218 cites W2899653153 @default.
- W4362602218 cites W2958105268 @default.
- W4362602218 cites W2963446989 @default.
- W4362602218 cites W2973203984 @default.
- W4362602218 cites W2979316386 @default.
- W4362602218 cites W3005961708 @default.
- W4362602218 cites W3016934986 @default.
- W4362602218 cites W3017322036 @default.
- W4362602218 cites W3040617212 @default.
- W4362602218 cites W3099531013 @default.
- W4362602218 cites W3138910696 @default.
- W4362602218 cites W3150196765 @default.
- W4362602218 cites W3191251698 @default.
- W4362602218 cites W3194912012 @default.
- W4362602218 cites W3206041136 @default.
- W4362602218 cites W4200310378 @default.
- W4362602218 doi "https://doi.org/10.1186/s13014-023-02246-z" @default.
- W4362602218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37016416" @default.
- W4362602218 hasPublicationYear "2023" @default.
- W4362602218 type Work @default.
- W4362602218 citedByCount "1" @default.
- W4362602218 countsByYear W43626022182023 @default.
- W4362602218 crossrefType "journal-article" @default.
- W4362602218 hasAuthorship W4362602218A5002242540 @default.
- W4362602218 hasAuthorship W4362602218A5024308329 @default.
- W4362602218 hasAuthorship W4362602218A5033299942 @default.
- W4362602218 hasAuthorship W4362602218A5040358775 @default.
- W4362602218 hasAuthorship W4362602218A5047821139 @default.
- W4362602218 hasAuthorship W4362602218A5048723918 @default.
- W4362602218 hasAuthorship W4362602218A5053147085 @default.
- W4362602218 hasAuthorship W4362602218A5053183388 @default.
- W4362602218 hasAuthorship W4362602218A5065050076 @default.
- W4362602218 hasAuthorship W4362602218A5072792947 @default.
- W4362602218 hasAuthorship W4362602218A5073216396 @default.
- W4362602218 hasAuthorship W4362602218A5073413027 @default.
- W4362602218 hasAuthorship W4362602218A5074993378 @default.
- W4362602218 hasAuthorship W4362602218A5076932590 @default.
- W4362602218 hasBestOaLocation W43626022181 @default.
- W4362602218 hasConcept C121608353 @default.
- W4362602218 hasConcept C126322002 @default.
- W4362602218 hasConcept C126838900 @default.
- W4362602218 hasConcept C127413603 @default.
- W4362602218 hasConcept C142724271 @default.
- W4362602218 hasConcept C143409427 @default.
- W4362602218 hasConcept C199639397 @default.
- W4362602218 hasConcept C2778164965 @default.
- W4362602218 hasConcept C2779013556 @default.
- W4362602218 hasConcept C2779104521 @default.
- W4362602218 hasConcept C2779130545 @default.
- W4362602218 hasConcept C2780387249 @default.
- W4362602218 hasConcept C2989005 @default.
- W4362602218 hasConcept C509974204 @default.
- W4362602218 hasConcept C71924100 @default.
- W4362602218 hasConcept C72563966 @default.
- W4362602218 hasConceptScore W4362602218C121608353 @default.
- W4362602218 hasConceptScore W4362602218C126322002 @default.
- W4362602218 hasConceptScore W4362602218C126838900 @default.
- W4362602218 hasConceptScore W4362602218C127413603 @default.
- W4362602218 hasConceptScore W4362602218C142724271 @default.
- W4362602218 hasConceptScore W4362602218C143409427 @default.
- W4362602218 hasConceptScore W4362602218C199639397 @default.
- W4362602218 hasConceptScore W4362602218C2778164965 @default.
- W4362602218 hasConceptScore W4362602218C2779013556 @default.
- W4362602218 hasConceptScore W4362602218C2779104521 @default.
- W4362602218 hasConceptScore W4362602218C2779130545 @default.
- W4362602218 hasConceptScore W4362602218C2780387249 @default.
- W4362602218 hasConceptScore W4362602218C2989005 @default.
- W4362602218 hasConceptScore W4362602218C509974204 @default.
- W4362602218 hasConceptScore W4362602218C71924100 @default.
- W4362602218 hasConceptScore W4362602218C72563966 @default.
- W4362602218 hasIssue "1" @default.
- W4362602218 hasLocation W43626022181 @default.
- W4362602218 hasLocation W43626022182 @default.
- W4362602218 hasLocation W43626022183 @default.
- W4362602218 hasOpenAccess W4362602218 @default.
- W4362602218 hasPrimaryLocation W43626022181 @default.