Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362605396> ?p ?o ?g. }
- W4362605396 abstract "In many places, like museums, banks, and airports, network cameras have taken the place of outdated analogue cameras as a result of advancements in chip technology and the reduced costs of storage and bandwidth equipment, among other factors. In an endeavor to increase public safety and health protection, lower crime, and implement video surveillance, the sector has entered the blowout phase. A crucial part of developing an intelligent CCTV system is the detection of abnormal events, human behaviour, and object recognition. These technologies enable the detection of anomalous environmental phenomena, anomalous human behaviour, and the environmental state of alert. These systems use machine learning and machine vision capabilities to recognize and detect specific anomalies that appear in CCTV stream footage. For these systems, supervised learning is a popular training method, and frame-by-frame processing is frequently used. However, supervised learning has been replaced as unsupervised learning as well as semi-supervised learning for the system's training since anomalies come in a variety of forms and because it is not practical to which was before and educate all types of anomalies. By using this technology, the amount of labour that must be done by humans to manually spot anomalies in the CCTV live feed and generate alerts can be reduced or eliminated. Additionally, the method improves storage efficiency by only preserving anomalous occurrences in their original quality and leaving regular circumstances in low quality. Additionally, you may use the Grassmann algorithm to identify faces in CCTV data and alert surrounding security systems. The suggested approach offers better reliability in outlier detection and face detection, according to experimental findings." @default.
- W4362605396 created "2023-04-06" @default.
- W4362605396 creator A5004755057 @default.
- W4362605396 creator A5022969005 @default.
- W4362605396 creator A5045920691 @default.
- W4362605396 creator A5072183743 @default.
- W4362605396 date "2023-03-02" @default.
- W4362605396 modified "2023-09-27" @default.
- W4362605396 title "An Analysis of Abnormal Event Detection and Person Identification from Surveillance Cameras using Motion Vectors with Deep Learning" @default.
- W4362605396 cites W2540481276 @default.
- W4362605396 cites W2921491036 @default.
- W4362605396 cites W2963091558 @default.
- W4362605396 cites W2963111876 @default.
- W4362605396 cites W2963795951 @default.
- W4362605396 cites W2970271202 @default.
- W4362605396 cites W2981741013 @default.
- W4362605396 cites W2982190919 @default.
- W4362605396 cites W2987228832 @default.
- W4362605396 cites W2989623883 @default.
- W4362605396 cites W3034218934 @default.
- W4362605396 cites W3035021504 @default.
- W4362605396 cites W3052078203 @default.
- W4362605396 cites W3077420696 @default.
- W4362605396 cites W3103592385 @default.
- W4362605396 cites W3107664750 @default.
- W4362605396 cites W3110474347 @default.
- W4362605396 cites W3136793533 @default.
- W4362605396 cites W3160045550 @default.
- W4362605396 cites W3168600998 @default.
- W4362605396 cites W3168984673 @default.
- W4362605396 cites W3169407681 @default.
- W4362605396 cites W3185432944 @default.
- W4362605396 cites W3190318906 @default.
- W4362605396 cites W3202896130 @default.
- W4362605396 cites W3212899624 @default.
- W4362605396 cites W4213354309 @default.
- W4362605396 cites W4225692608 @default.
- W4362605396 cites W4226325154 @default.
- W4362605396 cites W4285139925 @default.
- W4362605396 cites W4285170025 @default.
- W4362605396 cites W4293056092 @default.
- W4362605396 cites W4297399796 @default.
- W4362605396 cites W4306154313 @default.
- W4362605396 cites W4309643737 @default.
- W4362605396 cites W4312554543 @default.
- W4362605396 doi "https://doi.org/10.1109/icears56392.2023.10085466" @default.
- W4362605396 hasPublicationYear "2023" @default.
- W4362605396 type Work @default.
- W4362605396 citedByCount "0" @default.
- W4362605396 crossrefType "proceedings-article" @default.
- W4362605396 hasAuthorship W4362605396A5004755057 @default.
- W4362605396 hasAuthorship W4362605396A5022969005 @default.
- W4362605396 hasAuthorship W4362605396A5045920691 @default.
- W4362605396 hasAuthorship W4362605396A5072183743 @default.
- W4362605396 hasConcept C108583219 @default.
- W4362605396 hasConcept C111472728 @default.
- W4362605396 hasConcept C116834253 @default.
- W4362605396 hasConcept C119857082 @default.
- W4362605396 hasConcept C126042441 @default.
- W4362605396 hasConcept C136197465 @default.
- W4362605396 hasConcept C136389625 @default.
- W4362605396 hasConcept C138885662 @default.
- W4362605396 hasConcept C153180895 @default.
- W4362605396 hasConcept C154945302 @default.
- W4362605396 hasConcept C204222849 @default.
- W4362605396 hasConcept C2776151529 @default.
- W4362605396 hasConcept C2779530757 @default.
- W4362605396 hasConcept C31972630 @default.
- W4362605396 hasConcept C38652104 @default.
- W4362605396 hasConcept C41008148 @default.
- W4362605396 hasConcept C50644808 @default.
- W4362605396 hasConcept C59822182 @default.
- W4362605396 hasConcept C76155785 @default.
- W4362605396 hasConcept C86803240 @default.
- W4362605396 hasConceptScore W4362605396C108583219 @default.
- W4362605396 hasConceptScore W4362605396C111472728 @default.
- W4362605396 hasConceptScore W4362605396C116834253 @default.
- W4362605396 hasConceptScore W4362605396C119857082 @default.
- W4362605396 hasConceptScore W4362605396C126042441 @default.
- W4362605396 hasConceptScore W4362605396C136197465 @default.
- W4362605396 hasConceptScore W4362605396C136389625 @default.
- W4362605396 hasConceptScore W4362605396C138885662 @default.
- W4362605396 hasConceptScore W4362605396C153180895 @default.
- W4362605396 hasConceptScore W4362605396C154945302 @default.
- W4362605396 hasConceptScore W4362605396C204222849 @default.
- W4362605396 hasConceptScore W4362605396C2776151529 @default.
- W4362605396 hasConceptScore W4362605396C2779530757 @default.
- W4362605396 hasConceptScore W4362605396C31972630 @default.
- W4362605396 hasConceptScore W4362605396C38652104 @default.
- W4362605396 hasConceptScore W4362605396C41008148 @default.
- W4362605396 hasConceptScore W4362605396C50644808 @default.
- W4362605396 hasConceptScore W4362605396C59822182 @default.
- W4362605396 hasConceptScore W4362605396C76155785 @default.
- W4362605396 hasConceptScore W4362605396C86803240 @default.
- W4362605396 hasLocation W43626053961 @default.
- W4362605396 hasOpenAccess W4362605396 @default.
- W4362605396 hasPrimaryLocation W43626053961 @default.
- W4362605396 hasRelatedWork W2970686063 @default.
- W4362605396 hasRelatedWork W3192794374 @default.
- W4362605396 hasRelatedWork W3217300629 @default.