Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362605479> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4362605479 abstract "With laser osteotomy, patients may expect clean incisions and minimal damage to bone structure. With the smart laser osteotomy method, this study has suggested using Optical Coherence Tomography (OCT) to track the ablation as it occurred. The OCT image is useful for distinguishing different types of tissue and giving the ablation laser guidance on where to focus its energy to avoid damaging vital structures like bone marrow and nerves. Furthermore, the application relies on the quality of the OCT picture to determine the tissue classifier’s exactness. Because of this, establishing a reliable feedback system depends heavily on picture denoising. The frame averaging approach is widely utilized as a means of picture denoising in Optical Coherence Tomography (OCT). The more photographs that are used, the better the final image will seem. However, this method requires more time to acquire data and makes the system more vulnerable to motion abnormalities. To get around these restrictions, a deep learning denoising algorithm is used to simulate the frame-averaging approach. The generated image was of higher quality than traditional digital filtering techniques while maintaining the same level of detail as when using a frame-averaging approach. This study also analyzes how the proposed strategy impacts the precision of the tissue classifier model to inform the ablation laser’s adjustments. After applying image denoising, a significant improvement has been observed in the tissue classifier’s performance. It is also evident that the classifier trained with deep learning denoised images was as accurate as the classifier trained with frame-averaged images." @default.
- W4362605479 created "2023-04-06" @default.
- W4362605479 creator A5003119399 @default.
- W4362605479 creator A5027315292 @default.
- W4362605479 creator A5039776554 @default.
- W4362605479 creator A5066757242 @default.
- W4362605479 creator A5076026790 @default.
- W4362605479 creator A5088281336 @default.
- W4362605479 date "2023-03-02" @default.
- W4362605479 modified "2023-09-27" @default.
- W4362605479 title "Image Denoising for Smart Laser Osteotomy Using Deep Learning-based Fast Optical Coherence Tomography (OCT)" @default.
- W4362605479 cites W1202889301 @default.
- W4362605479 cites W1587883549 @default.
- W4362605479 cites W2021229920 @default.
- W4362605479 cites W2027606067 @default.
- W4362605479 cites W2595961886 @default.
- W4362605479 cites W2761461640 @default.
- W4362605479 cites W2770893157 @default.
- W4362605479 cites W2791613595 @default.
- W4362605479 cites W2901310501 @default.
- W4362605479 cites W2919070891 @default.
- W4362605479 cites W2942205144 @default.
- W4362605479 cites W2953345135 @default.
- W4362605479 cites W2955515927 @default.
- W4362605479 cites W2972844301 @default.
- W4362605479 cites W2974895113 @default.
- W4362605479 cites W3010901454 @default.
- W4362605479 cites W3105282616 @default.
- W4362605479 doi "https://doi.org/10.1109/icears56392.2023.10085568" @default.
- W4362605479 hasPublicationYear "2023" @default.
- W4362605479 type Work @default.
- W4362605479 citedByCount "0" @default.
- W4362605479 crossrefType "proceedings-article" @default.
- W4362605479 hasAuthorship W4362605479A5003119399 @default.
- W4362605479 hasAuthorship W4362605479A5027315292 @default.
- W4362605479 hasAuthorship W4362605479A5039776554 @default.
- W4362605479 hasAuthorship W4362605479A5066757242 @default.
- W4362605479 hasAuthorship W4362605479A5076026790 @default.
- W4362605479 hasAuthorship W4362605479A5088281336 @default.
- W4362605479 hasConcept C108583219 @default.
- W4362605479 hasConcept C115961682 @default.
- W4362605479 hasConcept C126838900 @default.
- W4362605479 hasConcept C153180895 @default.
- W4362605479 hasConcept C154945302 @default.
- W4362605479 hasConcept C163294075 @default.
- W4362605479 hasConcept C2778818243 @default.
- W4362605479 hasConcept C31972630 @default.
- W4362605479 hasConcept C41008148 @default.
- W4362605479 hasConcept C55020928 @default.
- W4362605479 hasConcept C71924100 @default.
- W4362605479 hasConcept C95623464 @default.
- W4362605479 hasConceptScore W4362605479C108583219 @default.
- W4362605479 hasConceptScore W4362605479C115961682 @default.
- W4362605479 hasConceptScore W4362605479C126838900 @default.
- W4362605479 hasConceptScore W4362605479C153180895 @default.
- W4362605479 hasConceptScore W4362605479C154945302 @default.
- W4362605479 hasConceptScore W4362605479C163294075 @default.
- W4362605479 hasConceptScore W4362605479C2778818243 @default.
- W4362605479 hasConceptScore W4362605479C31972630 @default.
- W4362605479 hasConceptScore W4362605479C41008148 @default.
- W4362605479 hasConceptScore W4362605479C55020928 @default.
- W4362605479 hasConceptScore W4362605479C71924100 @default.
- W4362605479 hasConceptScore W4362605479C95623464 @default.
- W4362605479 hasLocation W43626054791 @default.
- W4362605479 hasOpenAccess W4362605479 @default.
- W4362605479 hasPrimaryLocation W43626054791 @default.
- W4362605479 hasRelatedWork W2167582322 @default.
- W4362605479 hasRelatedWork W2483420468 @default.
- W4362605479 hasRelatedWork W2563096758 @default.
- W4362605479 hasRelatedWork W2738221750 @default.
- W4362605479 hasRelatedWork W2972035100 @default.
- W4362605479 hasRelatedWork W2998718015 @default.
- W4362605479 hasRelatedWork W3217021205 @default.
- W4362605479 hasRelatedWork W4307711312 @default.
- W4362605479 hasRelatedWork W4386053843 @default.
- W4362605479 hasRelatedWork W3158004940 @default.
- W4362605479 isParatext "false" @default.
- W4362605479 isRetracted "false" @default.
- W4362605479 workType "article" @default.