Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362609525> ?p ?o ?g. }
- W4362609525 endingPage "223" @default.
- W4362609525 startingPage "223" @default.
- W4362609525 abstract "The field of automated machine learning (AutoML) has gained significant attention in recent years due to its ability to automate the process of building and optimizing machine learning models. However, the increasing amount of big data being generated has presented new challenges for AutoML systems in terms of big data management. In this paper, we introduce Fabolas and learning curve extrapolation as two methods for accelerating hyperparameter optimization. Four methods for quickening training were presented including Bag of Little Bootstraps, k-means clustering for Support Vector Machines, subsample size selection for gradient descent, and subsampling for logistic regression. Additionally, we also discuss the use of Markov Chain Monte Carlo (MCMC) methods and other stochastic optimization techniques to improve the efficiency of AutoML systems in managing big data. These methods enhance various facets of the training process, making it feasible to combine them in diverse ways to gain further speedups. We review several combinations that have potential and provide a comprehensive understanding of the current state of AutoML and its potential for managing big data in various industries. Furthermore, we also mention the importance of parallel computing and distributed systems to improve the scalability of the AutoML systems while working with big data." @default.
- W4362609525 created "2023-04-06" @default.
- W4362609525 creator A5010990835 @default.
- W4362609525 creator A5012988436 @default.
- W4362609525 creator A5020263205 @default.
- W4362609525 creator A5065914489 @default.
- W4362609525 creator A5076593069 @default.
- W4362609525 date "2023-04-05" @default.
- W4362609525 modified "2023-10-01" @default.
- W4362609525 title "AutoML with Bayesian Optimizations for Big Data Management" @default.
- W4362609525 cites W1981433115 @default.
- W4362609525 cites W1999393241 @default.
- W4362609525 cites W2021271429 @default.
- W4362609525 cites W2045326521 @default.
- W4362609525 cites W2054168018 @default.
- W4362609525 cites W2061570747 @default.
- W4362609525 cites W2064675550 @default.
- W4362609525 cites W2064741553 @default.
- W4362609525 cites W2127311048 @default.
- W4362609525 cites W2144499799 @default.
- W4362609525 cites W2146774335 @default.
- W4362609525 cites W2150869884 @default.
- W4362609525 cites W2200000192 @default.
- W4362609525 cites W2234281713 @default.
- W4362609525 cites W2562162676 @default.
- W4362609525 cites W2584781382 @default.
- W4362609525 cites W2740333758 @default.
- W4362609525 cites W2771622871 @default.
- W4362609525 cites W2808163457 @default.
- W4362609525 cites W2886851211 @default.
- W4362609525 cites W2899743487 @default.
- W4362609525 cites W2914175613 @default.
- W4362609525 cites W2964024268 @default.
- W4362609525 cites W2965743638 @default.
- W4362609525 cites W3009257014 @default.
- W4362609525 cites W3010850044 @default.
- W4362609525 cites W3098488568 @default.
- W4362609525 cites W3098603383 @default.
- W4362609525 cites W3102083522 @default.
- W4362609525 cites W4200073570 @default.
- W4362609525 cites W4210471555 @default.
- W4362609525 cites W4213425892 @default.
- W4362609525 cites W4239510810 @default.
- W4362609525 cites W4280619808 @default.
- W4362609525 cites W4283331987 @default.
- W4362609525 cites W4285236500 @default.
- W4362609525 cites W4285299760 @default.
- W4362609525 cites W4294983363 @default.
- W4362609525 cites W4308088206 @default.
- W4362609525 cites W4308088218 @default.
- W4362609525 cites W4311120686 @default.
- W4362609525 cites W4312920813 @default.
- W4362609525 cites W4319319893 @default.
- W4362609525 cites W4320024137 @default.
- W4362609525 cites W4323855133 @default.
- W4362609525 cites W60686164 @default.
- W4362609525 doi "https://doi.org/10.3390/info14040223" @default.
- W4362609525 hasPublicationYear "2023" @default.
- W4362609525 type Work @default.
- W4362609525 citedByCount "4" @default.
- W4362609525 countsByYear W43626095252023 @default.
- W4362609525 crossrefType "journal-article" @default.
- W4362609525 hasAuthorship W4362609525A5010990835 @default.
- W4362609525 hasAuthorship W4362609525A5012988436 @default.
- W4362609525 hasAuthorship W4362609525A5020263205 @default.
- W4362609525 hasAuthorship W4362609525A5065914489 @default.
- W4362609525 hasAuthorship W4362609525A5076593069 @default.
- W4362609525 hasBestOaLocation W43626095251 @default.
- W4362609525 hasConcept C107673813 @default.
- W4362609525 hasConcept C111350023 @default.
- W4362609525 hasConcept C119857082 @default.
- W4362609525 hasConcept C124101348 @default.
- W4362609525 hasConcept C154945302 @default.
- W4362609525 hasConcept C206688291 @default.
- W4362609525 hasConcept C2522767166 @default.
- W4362609525 hasConcept C2778049539 @default.
- W4362609525 hasConcept C41008148 @default.
- W4362609525 hasConcept C48044578 @default.
- W4362609525 hasConcept C50644808 @default.
- W4362609525 hasConcept C73555534 @default.
- W4362609525 hasConcept C75684735 @default.
- W4362609525 hasConcept C77088390 @default.
- W4362609525 hasConcept C8642999 @default.
- W4362609525 hasConceptScore W4362609525C107673813 @default.
- W4362609525 hasConceptScore W4362609525C111350023 @default.
- W4362609525 hasConceptScore W4362609525C119857082 @default.
- W4362609525 hasConceptScore W4362609525C124101348 @default.
- W4362609525 hasConceptScore W4362609525C154945302 @default.
- W4362609525 hasConceptScore W4362609525C206688291 @default.
- W4362609525 hasConceptScore W4362609525C2522767166 @default.
- W4362609525 hasConceptScore W4362609525C2778049539 @default.
- W4362609525 hasConceptScore W4362609525C41008148 @default.
- W4362609525 hasConceptScore W4362609525C48044578 @default.
- W4362609525 hasConceptScore W4362609525C50644808 @default.
- W4362609525 hasConceptScore W4362609525C73555534 @default.
- W4362609525 hasConceptScore W4362609525C75684735 @default.
- W4362609525 hasConceptScore W4362609525C77088390 @default.
- W4362609525 hasConceptScore W4362609525C8642999 @default.