Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362614755> ?p ?o ?g. }
- W4362614755 endingPage "1716" @default.
- W4362614755 startingPage "1716" @default.
- W4362614755 abstract "Over recent years, machine translation has achieved astounding accomplishments. Machine translation has become more evident with the need to understand the information available on the internet in different languages and due to the up-scaled exchange in international trade. The enhanced computing speed due to advancements in the hardware components and easy accessibility of the monolingual and bilingual data are the significant factors that have added up to boost the success of machine translation. This paper investigates the machine translation models developed so far to the current state-of-the-art providing a solid understanding of different architectures with the comparative evaluation and future directions for the translation task. Because hybrid models, neural machine translation, and statistical machine translation are the types of machine translation that are utilized the most frequently, it is essential to have an understanding of how each one functions. A comprehensive comprehension of the several approaches to machine translation would be made possible as a result of this. In order to understand the advantages and disadvantages of the various approaches, it is necessary to conduct an in-depth comparison of several models on a variety of benchmark datasets. The accuracy of translations from multiple models is compared using metrics such as the BLEU score, TER score, and METEOR score." @default.
- W4362614755 created "2023-04-07" @default.
- W4362614755 creator A5009046975 @default.
- W4362614755 creator A5012372409 @default.
- W4362614755 creator A5031271088 @default.
- W4362614755 creator A5032996381 @default.
- W4362614755 creator A5064313492 @default.
- W4362614755 creator A5085010633 @default.
- W4362614755 date "2023-04-04" @default.
- W4362614755 modified "2023-10-18" @default.
- W4362614755 title "Machine Translation Systems Based on Classical-Statistical-Deep-Learning Approaches" @default.
- W4362614755 cites W1571227886 @default.
- W4362614755 cites W1869993023 @default.
- W4362614755 cites W1964952992 @default.
- W4362614755 cites W1966032129 @default.
- W4362614755 cites W1977112873 @default.
- W4362614755 cites W1989166442 @default.
- W4362614755 cites W2002785199 @default.
- W4362614755 cites W2011008859 @default.
- W4362614755 cites W2042060232 @default.
- W4362614755 cites W2047325479 @default.
- W4362614755 cites W2048390999 @default.
- W4362614755 cites W2049872937 @default.
- W4362614755 cites W2055522652 @default.
- W4362614755 cites W2077758825 @default.
- W4362614755 cites W2081991592 @default.
- W4362614755 cites W2088220332 @default.
- W4362614755 cites W2100664567 @default.
- W4362614755 cites W2102258316 @default.
- W4362614755 cites W2107697390 @default.
- W4362614755 cites W2108540317 @default.
- W4362614755 cites W2111666304 @default.
- W4362614755 cites W2116316001 @default.
- W4362614755 cites W2116957398 @default.
- W4362614755 cites W2118536060 @default.
- W4362614755 cites W2120513984 @default.
- W4362614755 cites W2134163909 @default.
- W4362614755 cites W2140133598 @default.
- W4362614755 cites W2144279206 @default.
- W4362614755 cites W2152263452 @default.
- W4362614755 cites W2154124206 @default.
- W4362614755 cites W2160815625 @default.
- W4362614755 cites W2161792612 @default.
- W4362614755 cites W2168966090 @default.
- W4362614755 cites W2325274022 @default.
- W4362614755 cites W2552839021 @default.
- W4362614755 cites W2962997665 @default.
- W4362614755 cites W2963463964 @default.
- W4362614755 cites W2963597829 @default.
- W4362614755 cites W2964048171 @default.
- W4362614755 cites W2964199361 @default.
- W4362614755 cites W2970231061 @default.
- W4362614755 cites W2980088508 @default.
- W4362614755 cites W2994678679 @default.
- W4362614755 cites W2997003477 @default.
- W4362614755 cites W2998183051 @default.
- W4362614755 cites W3017454464 @default.
- W4362614755 cites W3023986361 @default.
- W4362614755 cites W3034230673 @default.
- W4362614755 cites W3035022492 @default.
- W4362614755 cites W3035251378 @default.
- W4362614755 cites W3094771832 @default.
- W4362614755 cites W3096609285 @default.
- W4362614755 cites W3103092523 @default.
- W4362614755 cites W3122158565 @default.
- W4362614755 cites W3163203114 @default.
- W4362614755 cites W3163832451 @default.
- W4362614755 cites W3174172622 @default.
- W4362614755 cites W3175633940 @default.
- W4362614755 cites W3177265267 @default.
- W4362614755 cites W3180521376 @default.
- W4362614755 cites W3186748023 @default.
- W4362614755 cites W3201624628 @default.
- W4362614755 cites W3215885522 @default.
- W4362614755 cites W4205862160 @default.
- W4362614755 cites W4212930502 @default.
- W4362614755 cites W4214488463 @default.
- W4362614755 cites W4221146568 @default.
- W4362614755 cites W4224220194 @default.
- W4362614755 cites W4252320028 @default.
- W4362614755 cites W4311086243 @default.
- W4362614755 cites W4317502730 @default.
- W4362614755 doi "https://doi.org/10.3390/electronics12071716" @default.
- W4362614755 hasPublicationYear "2023" @default.
- W4362614755 type Work @default.
- W4362614755 citedByCount "0" @default.
- W4362614755 crossrefType "journal-article" @default.
- W4362614755 hasAuthorship W4362614755A5009046975 @default.
- W4362614755 hasAuthorship W4362614755A5012372409 @default.
- W4362614755 hasAuthorship W4362614755A5031271088 @default.
- W4362614755 hasAuthorship W4362614755A5032996381 @default.
- W4362614755 hasAuthorship W4362614755A5064313492 @default.
- W4362614755 hasAuthorship W4362614755A5085010633 @default.
- W4362614755 hasBestOaLocation W43626147551 @default.
- W4362614755 hasConcept C104317684 @default.
- W4362614755 hasConcept C105580179 @default.
- W4362614755 hasConcept C119857082 @default.
- W4362614755 hasConcept C13280743 @default.