Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362636107> ?p ?o ?g. }
- W4362636107 endingPage "102026" @default.
- W4362636107 startingPage "102026" @default.
- W4362636107 abstract "The prediction and decision-making features of the artificial neural network have been applied to several robotic related research works. Humanoid robot navigation is a challenging task for the researchers with best decision making. Simple artificial neural network (ANN) is the connection models which are poor in multistep decision making with long term planning and logical reasoning. So, in this study artificial neural network is improved in long term cognitive planning by SOAR (State Operator and Result) with powerful feature prediction through ANN (SANN) and hybridized with Fuzzy system for generation effective turning angle value, which will guide the humanoids to reach target location with better decision target seeking ability. An intelligent data fusion model is embedded between SOAR and ANN for converting the logical sequence information of SOAR to probabilistic vectors in multilayer ANNs. The obstacle distances are the input parameters to the SANN model and turning angle (TA) is the output from SANN. The obstacle distances along with the TA obtained from SANN is fed to the fuzzy system as input value and effective turning angle (ETA) is obtained to guide the humanoids towards reaching target. The proposed novel technique and ANN is used by both single and multiple humanoids in both simulation and experimental platforms. The novelty of the research focuses on the development of the new SOAR-ANN technique with better decision strategy for effective turning angle value, to obtain global optimal path by avoiding trapping in local optima and dead ends. The simulation and experimental results in terms of path length travelled and time spent to reach target are obtained from both ANN and novel SANN-Fuzzy technique. When the developed novel technique is compared with standalone ANN method during single humanoid navigation then, a significant improvement of 2–5% and 14–15% is observed in related to trajectory path span and trajectory time spent respectively. Similarly, during multiple humanoid navigation percentage improvement of 5–9% and 14–18% is obtained for humanoids in terms of navigational parameters respectively. The results clearly shows the developed technique requires less time and travels less path to reach target as compared to ANN and the percentage of error is also quite low. Statistical analysis is performed from the results of both the techniques and reflects the effectiveness of the proposed technique in comparison to ANN. Further the developed technique is compared against another existing methodologies like Fuzzy-ANN and Boundary Node Approach and, significant enhancements of 5.64% and 9.72% is attained in terms of track span respectively." @default.
- W4362636107 created "2023-04-07" @default.
- W4362636107 creator A5011332216 @default.
- W4362636107 creator A5069237189 @default.
- W4362636107 creator A5075645845 @default.
- W4362636107 creator A5077126404 @default.
- W4362636107 creator A5080681818 @default.
- W4362636107 creator A5088267212 @default.
- W4362636107 date "2023-06-01" @default.
- W4362636107 modified "2023-09-27" @default.
- W4362636107 title "Better decision-making strategy with target seeking approach of humanoids using hybridized SOARANN-fuzzy technique" @default.
- W4362636107 cites W1968268201 @default.
- W4362636107 cites W2040322946 @default.
- W4362636107 cites W2076937418 @default.
- W4362636107 cites W2087302033 @default.
- W4362636107 cites W2093176668 @default.
- W4362636107 cites W2126361607 @default.
- W4362636107 cites W2155436600 @default.
- W4362636107 cites W2179032365 @default.
- W4362636107 cites W2182826922 @default.
- W4362636107 cites W2417848255 @default.
- W4362636107 cites W2557053319 @default.
- W4362636107 cites W2593351620 @default.
- W4362636107 cites W2727292430 @default.
- W4362636107 cites W2752387064 @default.
- W4362636107 cites W2774264060 @default.
- W4362636107 cites W2783031680 @default.
- W4362636107 cites W2787893308 @default.
- W4362636107 cites W2794680491 @default.
- W4362636107 cites W2801858913 @default.
- W4362636107 cites W2884791467 @default.
- W4362636107 cites W2887685036 @default.
- W4362636107 cites W2898941002 @default.
- W4362636107 cites W2906609012 @default.
- W4362636107 cites W2907165912 @default.
- W4362636107 cites W2913775185 @default.
- W4362636107 cites W2921929397 @default.
- W4362636107 cites W2923474255 @default.
- W4362636107 cites W2944200650 @default.
- W4362636107 cites W2948428716 @default.
- W4362636107 cites W2950599367 @default.
- W4362636107 cites W2951208783 @default.
- W4362636107 cites W2953214318 @default.
- W4362636107 cites W2964900087 @default.
- W4362636107 cites W2967812497 @default.
- W4362636107 cites W2968736515 @default.
- W4362636107 cites W2980351131 @default.
- W4362636107 cites W2998786991 @default.
- W4362636107 cites W2999338564 @default.
- W4362636107 cites W3010294128 @default.
- W4362636107 cites W3017808136 @default.
- W4362636107 cites W3018311626 @default.
- W4362636107 cites W3018746098 @default.
- W4362636107 cites W3019662265 @default.
- W4362636107 cites W3106159194 @default.
- W4362636107 cites W3125618069 @default.
- W4362636107 cites W3203347961 @default.
- W4362636107 cites W3213022063 @default.
- W4362636107 cites W4200001984 @default.
- W4362636107 cites W4200461441 @default.
- W4362636107 cites W4210712667 @default.
- W4362636107 cites W4212771358 @default.
- W4362636107 cites W4225757319 @default.
- W4362636107 cites W4228997808 @default.
- W4362636107 cites W4283573899 @default.
- W4362636107 cites W4292267011 @default.
- W4362636107 cites W4296276657 @default.
- W4362636107 cites W571818863 @default.
- W4362636107 cites W2000718657 @default.
- W4362636107 doi "https://doi.org/10.1016/j.jocs.2023.102026" @default.
- W4362636107 hasPublicationYear "2023" @default.
- W4362636107 type Work @default.
- W4362636107 citedByCount "0" @default.
- W4362636107 crossrefType "journal-article" @default.
- W4362636107 hasAuthorship W4362636107A5011332216 @default.
- W4362636107 hasAuthorship W4362636107A5069237189 @default.
- W4362636107 hasAuthorship W4362636107A5075645845 @default.
- W4362636107 hasAuthorship W4362636107A5077126404 @default.
- W4362636107 hasAuthorship W4362636107A5080681818 @default.
- W4362636107 hasAuthorship W4362636107A5088267212 @default.
- W4362636107 hasConcept C119857082 @default.
- W4362636107 hasConcept C154945302 @default.
- W4362636107 hasConcept C17305859 @default.
- W4362636107 hasConcept C41008148 @default.
- W4362636107 hasConcept C50644808 @default.
- W4362636107 hasConcept C58166 @default.
- W4362636107 hasConceptScore W4362636107C119857082 @default.
- W4362636107 hasConceptScore W4362636107C154945302 @default.
- W4362636107 hasConceptScore W4362636107C17305859 @default.
- W4362636107 hasConceptScore W4362636107C41008148 @default.
- W4362636107 hasConceptScore W4362636107C50644808 @default.
- W4362636107 hasConceptScore W4362636107C58166 @default.
- W4362636107 hasLocation W43626361071 @default.
- W4362636107 hasOpenAccess W4362636107 @default.
- W4362636107 hasPrimaryLocation W43626361071 @default.
- W4362636107 hasRelatedWork W2386387936 @default.
- W4362636107 hasRelatedWork W2961085424 @default.
- W4362636107 hasRelatedWork W3046775127 @default.