Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362636719> ?p ?o ?g. }
- W4362636719 endingPage "304" @default.
- W4362636719 startingPage "304" @default.
- W4362636719 abstract "Water scarcity is a global problem affecting millions of people. It can lead to severe economic, social, and environmental consequences. It can also have several impacts on agriculture, industry, and households, leading to a decrease in human quality of life. To address water scarcity, governments, communities, and individuals must work in synergy for the sake of water resources conservation and the implementation of sustainable water management practices. Following this urge, the enhancement of water treatment processes and the development of novel ones is a must. Here, we have investigated the potential of the applicability of Green Aerogels in water treatment's ion removal section. Three families of aerogels originating from nanocellulose (NC), chitosan (CS), and graphene (G) are investigated. In order to reveal the difference between aerogel samples in-hand, a Principal Component Analysis (PCA) has been performed on the physical/chemical properties of aerogels, from one side, and the adsorption features, from another side. Several approaches and data pre-treatments have been considered to overcome any bias of the statistical method. Following the different followed approaches, the aerogel samples were located in the center of the biplot and were surrounded by different physical/chemical and adsorption properties. This would probably indicate a similar efficiency in the ion removal of the aerogels in-hand, whether they were nanocellulose-based, chitosan-based, or even graphene-based. In brief, PCA has shown a similar efficiency of all the investigated aerogels towards ion removal. The advantage of this method is its capacity to engage and seek similarities/dissimilarities between multiple factors, with the elimination of the shortcomings for the tedious and time-consuming bidimensional data visualization." @default.
- W4362636719 created "2023-04-07" @default.
- W4362636719 creator A5005091465 @default.
- W4362636719 creator A5031777741 @default.
- W4362636719 creator A5045739715 @default.
- W4362636719 creator A5066124828 @default.
- W4362636719 creator A5067363508 @default.
- W4362636719 creator A5074240101 @default.
- W4362636719 creator A5082240230 @default.
- W4362636719 creator A5082476707 @default.
- W4362636719 creator A5085438805 @default.
- W4362636719 date "2023-04-04" @default.
- W4362636719 modified "2023-10-14" @default.
- W4362636719 title "Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach" @default.
- W4362636719 cites W2094883484 @default.
- W4362636719 cites W2550375868 @default.
- W4362636719 cites W2564573798 @default.
- W4362636719 cites W2611387561 @default.
- W4362636719 cites W2796122873 @default.
- W4362636719 cites W2801965654 @default.
- W4362636719 cites W2890434718 @default.
- W4362636719 cites W2906368144 @default.
- W4362636719 cites W2954407945 @default.
- W4362636719 cites W2991210397 @default.
- W4362636719 cites W3012001534 @default.
- W4362636719 cites W3018185892 @default.
- W4362636719 cites W3022303657 @default.
- W4362636719 cites W3033486052 @default.
- W4362636719 cites W3047024864 @default.
- W4362636719 cites W3057711365 @default.
- W4362636719 cites W3083952054 @default.
- W4362636719 cites W3099514962 @default.
- W4362636719 cites W3122046975 @default.
- W4362636719 cites W3124763156 @default.
- W4362636719 cites W3134956480 @default.
- W4362636719 cites W3136425795 @default.
- W4362636719 cites W3146441902 @default.
- W4362636719 cites W3164200559 @default.
- W4362636719 cites W3187526941 @default.
- W4362636719 cites W3197490864 @default.
- W4362636719 cites W4220791145 @default.
- W4362636719 cites W4225122372 @default.
- W4362636719 cites W4285730784 @default.
- W4362636719 cites W4286566607 @default.
- W4362636719 cites W4286587125 @default.
- W4362636719 cites W4293660126 @default.
- W4362636719 cites W4296376876 @default.
- W4362636719 cites W4307623945 @default.
- W4362636719 cites W4319971245 @default.
- W4362636719 cites W4320729470 @default.
- W4362636719 doi "https://doi.org/10.3390/gels9040304" @default.
- W4362636719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37102916" @default.
- W4362636719 hasPublicationYear "2023" @default.
- W4362636719 type Work @default.
- W4362636719 citedByCount "4" @default.
- W4362636719 countsByYear W43626367192023 @default.
- W4362636719 crossrefType "journal-article" @default.
- W4362636719 hasAuthorship W4362636719A5005091465 @default.
- W4362636719 hasAuthorship W4362636719A5031777741 @default.
- W4362636719 hasAuthorship W4362636719A5045739715 @default.
- W4362636719 hasAuthorship W4362636719A5066124828 @default.
- W4362636719 hasAuthorship W4362636719A5067363508 @default.
- W4362636719 hasAuthorship W4362636719A5074240101 @default.
- W4362636719 hasAuthorship W4362636719A5082240230 @default.
- W4362636719 hasAuthorship W4362636719A5082476707 @default.
- W4362636719 hasAuthorship W4362636719A5085438805 @default.
- W4362636719 hasBestOaLocation W43626367191 @default.
- W4362636719 hasConcept C118518473 @default.
- W4362636719 hasConcept C127413603 @default.
- W4362636719 hasConcept C150394285 @default.
- W4362636719 hasConcept C154945302 @default.
- W4362636719 hasConcept C171250308 @default.
- W4362636719 hasConcept C178790620 @default.
- W4362636719 hasConcept C185592680 @default.
- W4362636719 hasConcept C18903297 @default.
- W4362636719 hasConcept C192562407 @default.
- W4362636719 hasConcept C27438332 @default.
- W4362636719 hasConcept C2777968448 @default.
- W4362636719 hasConcept C2779251873 @default.
- W4362636719 hasConcept C2780012831 @default.
- W4362636719 hasConcept C39432304 @default.
- W4362636719 hasConcept C41008148 @default.
- W4362636719 hasConcept C42360764 @default.
- W4362636719 hasConcept C51193700 @default.
- W4362636719 hasConcept C66204764 @default.
- W4362636719 hasConcept C86803240 @default.
- W4362636719 hasConceptScore W4362636719C118518473 @default.
- W4362636719 hasConceptScore W4362636719C127413603 @default.
- W4362636719 hasConceptScore W4362636719C150394285 @default.
- W4362636719 hasConceptScore W4362636719C154945302 @default.
- W4362636719 hasConceptScore W4362636719C171250308 @default.
- W4362636719 hasConceptScore W4362636719C178790620 @default.
- W4362636719 hasConceptScore W4362636719C185592680 @default.
- W4362636719 hasConceptScore W4362636719C18903297 @default.
- W4362636719 hasConceptScore W4362636719C192562407 @default.
- W4362636719 hasConceptScore W4362636719C27438332 @default.
- W4362636719 hasConceptScore W4362636719C2777968448 @default.
- W4362636719 hasConceptScore W4362636719C2779251873 @default.