Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362636732> ?p ?o ?g. }
- W4362636732 endingPage "107537" @default.
- W4362636732 startingPage "107537" @default.
- W4362636732 abstract "Increasing and compelling evidence has been proved that urinary and dietary metal exposure are underappreciated but potentially modifiable biomarkers for type 2 diabetes mellitus (T2DM). The aims of this study were (1) to identify the key potential biomarkers which contributed to T2DM with effective and parsimonious features and (2) to assess the utility of baseline variables and metal exposure in the diagnosis of T2DM.Based on the National Health and Nutrition Examination Survey (NHANES), we selected 9822 screening records with 82 significant variables covering demographics, lifestyle, anthropometric measures, diet and metal exposure for this study. Combining extreme gradient boosting (XGBoost), random forest and light gradient boosting machine (lightGBM), a soft voting ensemble model was proposed to measure the importance of 82 features. With this soft voting ensemble model and variance inflation factor (VIF), strong multicollinear features with low importance scores were further removed from candidate biomarkers. Then, a soft voting ensemble classifier was adopted to demonstrate the efficiency of the proposed feature selection method.With the novel feature selection method, 12 baseline variables and 3 metal variables were selected to detect patients at risk for T2DM in our study. For metal variables, the dietary copper (Cu), urinary cadmium (Cd) and urinary mercury (Hg) metals were selected as the most remarkable metal exposure and the corresponding P-values were all less than 0.05. In a classification model of T2DM with 12 baseline biomarkers, the addition of 3 metal exposure improved the classification accuracy of T2DM from a traditional area under the curve (AUC) 0.792 of the receiver operating characteristic (ROC) to an AUC 0.847.This was the first demonstration of T2DM classification with machine learning under urinary and dietary metal exposure. Improved prediction precision illustrated the effectiveness of the proposed machine learning-based diagnosis model facilitated lifestyle/dietary intervention for T2DM prevention." @default.
- W4362636732 created "2023-04-07" @default.
- W4362636732 creator A5008254936 @default.
- W4362636732 creator A5012099171 @default.
- W4362636732 creator A5033154771 @default.
- W4362636732 creator A5069964391 @default.
- W4362636732 creator A5078608062 @default.
- W4362636732 creator A5083301478 @default.
- W4362636732 date "2023-06-01" @default.
- W4362636732 modified "2023-10-14" @default.
- W4362636732 title "A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure" @default.
- W4362636732 cites W1964043583 @default.
- W4362636732 cites W2154279165 @default.
- W4362636732 cites W2585821407 @default.
- W4362636732 cites W2606106417 @default.
- W4362636732 cites W2780157115 @default.
- W4362636732 cites W2886540087 @default.
- W4362636732 cites W2889049844 @default.
- W4362636732 cites W2918270177 @default.
- W4362636732 cites W2948009788 @default.
- W4362636732 cites W2971270198 @default.
- W4362636732 cites W2972869264 @default.
- W4362636732 cites W2978826000 @default.
- W4362636732 cites W2986446268 @default.
- W4362636732 cites W3032218674 @default.
- W4362636732 cites W3038583753 @default.
- W4362636732 cites W3043767920 @default.
- W4362636732 cites W3046775141 @default.
- W4362636732 cites W3081036129 @default.
- W4362636732 cites W3084116491 @default.
- W4362636732 cites W3093944461 @default.
- W4362636732 cites W3102148818 @default.
- W4362636732 cites W3119987766 @default.
- W4362636732 cites W3134893694 @default.
- W4362636732 cites W3136662390 @default.
- W4362636732 cites W3155671184 @default.
- W4362636732 cites W3197492703 @default.
- W4362636732 cites W3202860733 @default.
- W4362636732 cites W3207298596 @default.
- W4362636732 cites W3216119358 @default.
- W4362636732 cites W3216131695 @default.
- W4362636732 cites W4205659145 @default.
- W4362636732 cites W4206973221 @default.
- W4362636732 cites W4220755962 @default.
- W4362636732 cites W4220816318 @default.
- W4362636732 cites W4223571504 @default.
- W4362636732 cites W4281684498 @default.
- W4362636732 cites W4286586958 @default.
- W4362636732 cites W4303684701 @default.
- W4362636732 cites W4313279537 @default.
- W4362636732 doi "https://doi.org/10.1016/j.cmpb.2023.107537" @default.
- W4362636732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37037162" @default.
- W4362636732 hasPublicationYear "2023" @default.
- W4362636732 type Work @default.
- W4362636732 citedByCount "3" @default.
- W4362636732 countsByYear W43626367322023 @default.
- W4362636732 crossrefType "journal-article" @default.
- W4362636732 hasAuthorship W4362636732A5008254936 @default.
- W4362636732 hasAuthorship W4362636732A5012099171 @default.
- W4362636732 hasAuthorship W4362636732A5033154771 @default.
- W4362636732 hasAuthorship W4362636732A5069964391 @default.
- W4362636732 hasAuthorship W4362636732A5078608062 @default.
- W4362636732 hasAuthorship W4362636732A5083301478 @default.
- W4362636732 hasConcept C105795698 @default.
- W4362636732 hasConcept C119857082 @default.
- W4362636732 hasConcept C134018914 @default.
- W4362636732 hasConcept C148483581 @default.
- W4362636732 hasConcept C154945302 @default.
- W4362636732 hasConcept C169258074 @default.
- W4362636732 hasConcept C2910068830 @default.
- W4362636732 hasConcept C33923547 @default.
- W4362636732 hasConcept C41008148 @default.
- W4362636732 hasConcept C45942800 @default.
- W4362636732 hasConcept C46686674 @default.
- W4362636732 hasConcept C555293320 @default.
- W4362636732 hasConcept C70153297 @default.
- W4362636732 hasConcept C71924100 @default.
- W4362636732 hasConceptScore W4362636732C105795698 @default.
- W4362636732 hasConceptScore W4362636732C119857082 @default.
- W4362636732 hasConceptScore W4362636732C134018914 @default.
- W4362636732 hasConceptScore W4362636732C148483581 @default.
- W4362636732 hasConceptScore W4362636732C154945302 @default.
- W4362636732 hasConceptScore W4362636732C169258074 @default.
- W4362636732 hasConceptScore W4362636732C2910068830 @default.
- W4362636732 hasConceptScore W4362636732C33923547 @default.
- W4362636732 hasConceptScore W4362636732C41008148 @default.
- W4362636732 hasConceptScore W4362636732C45942800 @default.
- W4362636732 hasConceptScore W4362636732C46686674 @default.
- W4362636732 hasConceptScore W4362636732C555293320 @default.
- W4362636732 hasConceptScore W4362636732C70153297 @default.
- W4362636732 hasConceptScore W4362636732C71924100 @default.
- W4362636732 hasFunder F4320321001 @default.
- W4362636732 hasFunder F4320322769 @default.
- W4362636732 hasLocation W43626367321 @default.
- W4362636732 hasLocation W43626367322 @default.
- W4362636732 hasOpenAccess W4362636732 @default.
- W4362636732 hasPrimaryLocation W43626367321 @default.
- W4362636732 hasRelatedWork W2955385375 @default.