Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362637269> ?p ?o ?g. }
- W4362637269 endingPage "112835" @default.
- W4362637269 startingPage "112835" @default.
- W4362637269 abstract "The unlabeled fault datasets often contain much non-sensitive redundant, and uncertain information. This study designs a novel interpretable and unsupervised dimension reduction method for unlabeled data containing redundancy and uncertainty. Firstly, a fuzzy-based way for pseudo-label generation is given, and feature cloud models under pseudo labels are established; Secondly, this study takes the expectation, entropy, and hyper entropy of the cloud models representing uncertainty in features as spatial vectors. The difference degree between vectors is treated as the evaluation standard to filter out non-sensitive features based on the maximum initial difference; Moreover, redundant elements are fused by t-SNE, and lower dimensional feature components conducive for fault classification are obtained; Finally, the effectiveness of the method is demonstrated by comparative experiments. The results show that this method has a higher factor, which means that the method can better mine the difference among different faults and improve the performance of fault identification." @default.
- W4362637269 created "2023-04-07" @default.
- W4362637269 creator A5017393186 @default.
- W4362637269 creator A5023214008 @default.
- W4362637269 creator A5054386334 @default.
- W4362637269 creator A5066755402 @default.
- W4362637269 date "2023-06-01" @default.
- W4362637269 modified "2023-10-18" @default.
- W4362637269 title "Dimension reduction method of high-dimensional fault datasets based on C_M_t-SNE under unsupervised background" @default.
- W4362637269 cites W1597576211 @default.
- W4362637269 cites W1991039395 @default.
- W4362637269 cites W2000066643 @default.
- W4362637269 cites W2003244299 @default.
- W4362637269 cites W2025496434 @default.
- W4362637269 cites W2034418625 @default.
- W4362637269 cites W2135069544 @default.
- W4362637269 cites W2317595875 @default.
- W4362637269 cites W2344403065 @default.
- W4362637269 cites W2518980640 @default.
- W4362637269 cites W2581851997 @default.
- W4362637269 cites W2591519764 @default.
- W4362637269 cites W2767479102 @default.
- W4362637269 cites W2782120943 @default.
- W4362637269 cites W2804016075 @default.
- W4362637269 cites W2887443913 @default.
- W4362637269 cites W2893076595 @default.
- W4362637269 cites W2901936262 @default.
- W4362637269 cites W2998406860 @default.
- W4362637269 cites W3020030373 @default.
- W4362637269 cites W3034712888 @default.
- W4362637269 cites W3048381435 @default.
- W4362637269 cites W3107595400 @default.
- W4362637269 cites W3143954825 @default.
- W4362637269 cites W3157977136 @default.
- W4362637269 cites W3159818976 @default.
- W4362637269 cites W3172994458 @default.
- W4362637269 cites W3197097990 @default.
- W4362637269 cites W4200445429 @default.
- W4362637269 cites W4211245231 @default.
- W4362637269 cites W4220991197 @default.
- W4362637269 cites W4292121845 @default.
- W4362637269 cites W4303987279 @default.
- W4362637269 cites W4310792233 @default.
- W4362637269 doi "https://doi.org/10.1016/j.measurement.2023.112835" @default.
- W4362637269 hasPublicationYear "2023" @default.
- W4362637269 type Work @default.
- W4362637269 citedByCount "1" @default.
- W4362637269 countsByYear W43626372692023 @default.
- W4362637269 crossrefType "journal-article" @default.
- W4362637269 hasAuthorship W4362637269A5017393186 @default.
- W4362637269 hasAuthorship W4362637269A5023214008 @default.
- W4362637269 hasAuthorship W4362637269A5054386334 @default.
- W4362637269 hasAuthorship W4362637269A5066755402 @default.
- W4362637269 hasConcept C106131492 @default.
- W4362637269 hasConcept C106301342 @default.
- W4362637269 hasConcept C111919701 @default.
- W4362637269 hasConcept C11413529 @default.
- W4362637269 hasConcept C121332964 @default.
- W4362637269 hasConcept C124101348 @default.
- W4362637269 hasConcept C152124472 @default.
- W4362637269 hasConcept C152745839 @default.
- W4362637269 hasConcept C153180895 @default.
- W4362637269 hasConcept C154945302 @default.
- W4362637269 hasConcept C172707124 @default.
- W4362637269 hasConcept C202444582 @default.
- W4362637269 hasConcept C3019722297 @default.
- W4362637269 hasConcept C31972630 @default.
- W4362637269 hasConcept C33676613 @default.
- W4362637269 hasConcept C33923547 @default.
- W4362637269 hasConcept C41008148 @default.
- W4362637269 hasConcept C58166 @default.
- W4362637269 hasConcept C62520636 @default.
- W4362637269 hasConcept C70518039 @default.
- W4362637269 hasConcept C83665646 @default.
- W4362637269 hasConceptScore W4362637269C106131492 @default.
- W4362637269 hasConceptScore W4362637269C106301342 @default.
- W4362637269 hasConceptScore W4362637269C111919701 @default.
- W4362637269 hasConceptScore W4362637269C11413529 @default.
- W4362637269 hasConceptScore W4362637269C121332964 @default.
- W4362637269 hasConceptScore W4362637269C124101348 @default.
- W4362637269 hasConceptScore W4362637269C152124472 @default.
- W4362637269 hasConceptScore W4362637269C152745839 @default.
- W4362637269 hasConceptScore W4362637269C153180895 @default.
- W4362637269 hasConceptScore W4362637269C154945302 @default.
- W4362637269 hasConceptScore W4362637269C172707124 @default.
- W4362637269 hasConceptScore W4362637269C202444582 @default.
- W4362637269 hasConceptScore W4362637269C3019722297 @default.
- W4362637269 hasConceptScore W4362637269C31972630 @default.
- W4362637269 hasConceptScore W4362637269C33676613 @default.
- W4362637269 hasConceptScore W4362637269C33923547 @default.
- W4362637269 hasConceptScore W4362637269C41008148 @default.
- W4362637269 hasConceptScore W4362637269C58166 @default.
- W4362637269 hasConceptScore W4362637269C62520636 @default.
- W4362637269 hasConceptScore W4362637269C70518039 @default.
- W4362637269 hasConceptScore W4362637269C83665646 @default.
- W4362637269 hasFunder F4320321001 @default.
- W4362637269 hasFunder F4320321605 @default.
- W4362637269 hasFunder F4320327518 @default.