Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362638521> ?p ?o ?g. }
- W4362638521 endingPage "127434" @default.
- W4362638521 startingPage "127434" @default.
- W4362638521 abstract "Imbibition oil recovery improves the recovery rate of low-permeability fractured reservoirs in petroleum fields. However, there is a lack of research on complex wettability and comprehensive imbibition at different scales. This study adopted a fracture-controlled matrix unit to study the complex wettability and imbibition mechanisms at the pore and core scales. We propose a characterization method for complex wettability based on a two-dimensional fracture-controlled matrix unit core-scale numerical model and established mixed-wettability models. Based on the phase-field theory, the oil–water two-phase imbibition flow was simulated. The comparative study of numerical simulation results and microscopic experimental analysis indicates that Jamin's effect has consistently influenced imbibition at the core and pore scales, which hinders the imbibition process. Macroscopic wettability had the same influence at the core and pore scales. Notably, when θ = 90°, the fluid pressure in the fracture acts as a secondary driving force, such that 6.72% and 5.35% of the oil is still produced from the oil in the Y- and S-type fractures, respectively. The imbibition recovery rates of the Y- and S-type complex mixed-wettability cores were 38.23% and 27.85%, respectively, which are between the contact angles θ = 30° and 90°. Complex wettability pores can be divided into four types at the core scale: wetting type, sub-wetting type, mixed-wetting type, and non-wetting pore. This complex wettability behavior is triggered by the complex wettability of the pore walls. The flow phenomenon is shown as imbibition occurring continuously when the wetting phase meets wetting and sub-wetting type pores. When mixed-wetting type pores were encountered, the wetting phase proceeded along the wetting wall. Imbibition stops when a non-wetting pore is encountered. Furthermore, when the wetting phase flowed through the primary pores to the interconnected secondary pores, imbibition continues if wall wetting pores are encountered. When single-wall wetting pores are encountered, the wetting phase proceeds along the wetting wall. Imbibition stops when double-wall non-wetting pores are encountered. The inlet flow velocity at the core scale had a dual effect. This manifests as the contact time between the wetting phase and matrix wall, and the fluid pressure in the fracture as the driving force." @default.
- W4362638521 created "2023-04-07" @default.
- W4362638521 creator A5025383075 @default.
- W4362638521 creator A5025621406 @default.
- W4362638521 creator A5057055806 @default.
- W4362638521 creator A5075662908 @default.
- W4362638521 creator A5076844322 @default.
- W4362638521 creator A5083581319 @default.
- W4362638521 creator A5089063668 @default.
- W4362638521 date "2023-07-01" @default.
- W4362638521 modified "2023-10-05" @default.
- W4362638521 title "Complex wettability behavior triggering mechanism on imbibition: A model construction and comparative study based on analysis at multiple scales" @default.
- W4362638521 cites W1503497660 @default.
- W4362638521 cites W1891653491 @default.
- W4362638521 cites W1999939260 @default.
- W4362638521 cites W2066332877 @default.
- W4362638521 cites W2082215218 @default.
- W4362638521 cites W2113795962 @default.
- W4362638521 cites W2310485623 @default.
- W4362638521 cites W2346647106 @default.
- W4362638521 cites W2594671546 @default.
- W4362638521 cites W2606381196 @default.
- W4362638521 cites W2606723616 @default.
- W4362638521 cites W2625103960 @default.
- W4362638521 cites W2627009975 @default.
- W4362638521 cites W2690434411 @default.
- W4362638521 cites W2739681533 @default.
- W4362638521 cites W2770191844 @default.
- W4362638521 cites W2772235756 @default.
- W4362638521 cites W2809739196 @default.
- W4362638521 cites W2885254918 @default.
- W4362638521 cites W2895683799 @default.
- W4362638521 cites W2939913666 @default.
- W4362638521 cites W2949077317 @default.
- W4362638521 cites W3003833139 @default.
- W4362638521 cites W3040755509 @default.
- W4362638521 cites W3084072878 @default.
- W4362638521 cites W3096100423 @default.
- W4362638521 cites W3105780262 @default.
- W4362638521 cites W3118898937 @default.
- W4362638521 cites W3124633931 @default.
- W4362638521 cites W3136619196 @default.
- W4362638521 cites W3139700708 @default.
- W4362638521 cites W3153361535 @default.
- W4362638521 cites W3159364563 @default.
- W4362638521 cites W3162389342 @default.
- W4362638521 cites W3164778428 @default.
- W4362638521 cites W3172183121 @default.
- W4362638521 cites W3183500068 @default.
- W4362638521 cites W3188158077 @default.
- W4362638521 cites W3189909279 @default.
- W4362638521 cites W3195742976 @default.
- W4362638521 cites W3197218719 @default.
- W4362638521 cites W4281912718 @default.
- W4362638521 cites W4292876356 @default.
- W4362638521 doi "https://doi.org/10.1016/j.energy.2023.127434" @default.
- W4362638521 hasPublicationYear "2023" @default.
- W4362638521 type Work @default.
- W4362638521 citedByCount "4" @default.
- W4362638521 countsByYear W43626385212023 @default.
- W4362638521 crossrefType "journal-article" @default.
- W4362638521 hasAuthorship W4362638521A5025383075 @default.
- W4362638521 hasAuthorship W4362638521A5025621406 @default.
- W4362638521 hasAuthorship W4362638521A5057055806 @default.
- W4362638521 hasAuthorship W4362638521A5075662908 @default.
- W4362638521 hasAuthorship W4362638521A5076844322 @default.
- W4362638521 hasAuthorship W4362638521A5083581319 @default.
- W4362638521 hasAuthorship W4362638521A5089063668 @default.
- W4362638521 hasConcept C100701293 @default.
- W4362638521 hasConcept C127313418 @default.
- W4362638521 hasConcept C134514944 @default.
- W4362638521 hasConcept C159985019 @default.
- W4362638521 hasConcept C187320778 @default.
- W4362638521 hasConcept C192562407 @default.
- W4362638521 hasConcept C2776364302 @default.
- W4362638521 hasConcept C2778409621 @default.
- W4362638521 hasConcept C59822182 @default.
- W4362638521 hasConcept C6556556 @default.
- W4362638521 hasConcept C78762247 @default.
- W4362638521 hasConcept C86803240 @default.
- W4362638521 hasConceptScore W4362638521C100701293 @default.
- W4362638521 hasConceptScore W4362638521C127313418 @default.
- W4362638521 hasConceptScore W4362638521C134514944 @default.
- W4362638521 hasConceptScore W4362638521C159985019 @default.
- W4362638521 hasConceptScore W4362638521C187320778 @default.
- W4362638521 hasConceptScore W4362638521C192562407 @default.
- W4362638521 hasConceptScore W4362638521C2776364302 @default.
- W4362638521 hasConceptScore W4362638521C2778409621 @default.
- W4362638521 hasConceptScore W4362638521C59822182 @default.
- W4362638521 hasConceptScore W4362638521C6556556 @default.
- W4362638521 hasConceptScore W4362638521C78762247 @default.
- W4362638521 hasConceptScore W4362638521C86803240 @default.
- W4362638521 hasLocation W43626385211 @default.
- W4362638521 hasOpenAccess W4362638521 @default.
- W4362638521 hasPrimaryLocation W43626385211 @default.
- W4362638521 hasRelatedWork W1937509683 @default.
- W4362638521 hasRelatedWork W2006022997 @default.
- W4362638521 hasRelatedWork W2010582158 @default.