Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362640241> ?p ?o ?g. }
- W4362640241 endingPage "1720" @default.
- W4362640241 startingPage "1720" @default.
- W4362640241 abstract "The article proposes a new approach to maximum power point tracking (MPPT) for photovoltaic (PV) systems operating under partial shading conditions (PSCs) that improves upon the limitations of traditional methods in identifying the global maximum power (GMP), resulting in reduced system efficiency. The proposed approach uses a two-stage MPPT method that employs machine learning (ML) and terminal sliding mode control (TSMC). In the first stage, a neuro fuzzy network (NFN) is used to improve the accuracy of the reference voltage generation for MPPT, while in the second stage, a TSMC is used to track the MPP voltage using a non-inverting DC—DC buck-boost converter. The proposed method has been validated through numerical simulations and experiments, demonstrating significant enhancements in MPPT performance even under challenging scenarios. A comprehensive comparison study was conducted with two traditional MPPT algorithms, PID and P&O, which demonstrated the superiority of the proposed method in generating higher power and less control time. The proposed method generates the least power loss in both steady and dynamic states and exhibits an 8.2% higher average power and 60% less control time compared to traditional methods, indicating its superior performance. The proposed method was also found to perform well under real-world conditions and load variations, resulting in 56.1% less variability and only 2–3 W standard deviation at the GMPP." @default.
- W4362640241 created "2023-04-07" @default.
- W4362640241 creator A5008652053 @default.
- W4362640241 creator A5009333545 @default.
- W4362640241 creator A5039204747 @default.
- W4362640241 creator A5045845097 @default.
- W4362640241 creator A5087083328 @default.
- W4362640241 creator A5087735486 @default.
- W4362640241 date "2023-04-04" @default.
- W4362640241 modified "2023-09-30" @default.
- W4362640241 title "Optimizing Large-Scale PV Systems with Machine Learning: A Neuro-Fuzzy MPPT Control for PSCs with Uncertainties" @default.
- W4362640241 cites W1212510512 @default.
- W4362640241 cites W1980979475 @default.
- W4362640241 cites W1995532448 @default.
- W4362640241 cites W2149295419 @default.
- W4362640241 cites W2159092297 @default.
- W4362640241 cites W2192523407 @default.
- W4362640241 cites W2215685717 @default.
- W4362640241 cites W2230386561 @default.
- W4362640241 cites W2464317670 @default.
- W4362640241 cites W2510304238 @default.
- W4362640241 cites W2555844759 @default.
- W4362640241 cites W2591427341 @default.
- W4362640241 cites W2591786642 @default.
- W4362640241 cites W2675279495 @default.
- W4362640241 cites W2740748703 @default.
- W4362640241 cites W2750239752 @default.
- W4362640241 cites W2766645954 @default.
- W4362640241 cites W2770534274 @default.
- W4362640241 cites W2780031357 @default.
- W4362640241 cites W2798052969 @default.
- W4362640241 cites W2804326412 @default.
- W4362640241 cites W2895639641 @default.
- W4362640241 cites W3026718828 @default.
- W4362640241 cites W4282928415 @default.
- W4362640241 cites W4302425296 @default.
- W4362640241 cites W4313402561 @default.
- W4362640241 cites W4313583820 @default.
- W4362640241 cites W4317726606 @default.
- W4362640241 cites W4321598618 @default.
- W4362640241 cites W4322503209 @default.
- W4362640241 doi "https://doi.org/10.3390/electronics12071720" @default.
- W4362640241 hasPublicationYear "2023" @default.
- W4362640241 type Work @default.
- W4362640241 citedByCount "3" @default.
- W4362640241 countsByYear W43626402412023 @default.
- W4362640241 crossrefType "journal-article" @default.
- W4362640241 hasAuthorship W4362640241A5008652053 @default.
- W4362640241 hasAuthorship W4362640241A5009333545 @default.
- W4362640241 hasAuthorship W4362640241A5039204747 @default.
- W4362640241 hasAuthorship W4362640241A5045845097 @default.
- W4362640241 hasAuthorship W4362640241A5087083328 @default.
- W4362640241 hasAuthorship W4362640241A5087735486 @default.
- W4362640241 hasBestOaLocation W43626402411 @default.
- W4362640241 hasConcept C11190779 @default.
- W4362640241 hasConcept C116615679 @default.
- W4362640241 hasConcept C119599485 @default.
- W4362640241 hasConcept C121332964 @default.
- W4362640241 hasConcept C127413603 @default.
- W4362640241 hasConcept C154945302 @default.
- W4362640241 hasConcept C163258240 @default.
- W4362640241 hasConcept C165801399 @default.
- W4362640241 hasConcept C2775924081 @default.
- W4362640241 hasConcept C36139824 @default.
- W4362640241 hasConcept C41008148 @default.
- W4362640241 hasConcept C41291067 @default.
- W4362640241 hasConcept C47446073 @default.
- W4362640241 hasConcept C62520636 @default.
- W4362640241 hasConceptScore W4362640241C11190779 @default.
- W4362640241 hasConceptScore W4362640241C116615679 @default.
- W4362640241 hasConceptScore W4362640241C119599485 @default.
- W4362640241 hasConceptScore W4362640241C121332964 @default.
- W4362640241 hasConceptScore W4362640241C127413603 @default.
- W4362640241 hasConceptScore W4362640241C154945302 @default.
- W4362640241 hasConceptScore W4362640241C163258240 @default.
- W4362640241 hasConceptScore W4362640241C165801399 @default.
- W4362640241 hasConceptScore W4362640241C2775924081 @default.
- W4362640241 hasConceptScore W4362640241C36139824 @default.
- W4362640241 hasConceptScore W4362640241C41008148 @default.
- W4362640241 hasConceptScore W4362640241C41291067 @default.
- W4362640241 hasConceptScore W4362640241C47446073 @default.
- W4362640241 hasConceptScore W4362640241C62520636 @default.
- W4362640241 hasIssue "7" @default.
- W4362640241 hasLocation W43626402411 @default.
- W4362640241 hasOpenAccess W4362640241 @default.
- W4362640241 hasPrimaryLocation W43626402411 @default.
- W4362640241 hasRelatedWork W1976594186 @default.
- W4362640241 hasRelatedWork W2037222940 @default.
- W4362640241 hasRelatedWork W2127886310 @default.
- W4362640241 hasRelatedWork W2146595926 @default.
- W4362640241 hasRelatedWork W2383392409 @default.
- W4362640241 hasRelatedWork W2388805116 @default.
- W4362640241 hasRelatedWork W2558826019 @default.
- W4362640241 hasRelatedWork W2922470602 @default.
- W4362640241 hasRelatedWork W3186965506 @default.
- W4362640241 hasRelatedWork W4281771989 @default.
- W4362640241 hasVolume "12" @default.
- W4362640241 isParatext "false" @default.