Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362656654> ?p ?o ?g. }
- W4362656654 endingPage "110995" @default.
- W4362656654 startingPage "110995" @default.
- W4362656654 abstract "There is a growing interest in differentiation algorithms that converge in fixed time with a predefined Upper Bound on the Settling Time (UBST). However, existing differentiation algorithms are limited to signals having an $n$-th order Lipschitz derivative. Here, we introduce a general methodology based on time-varying gains to circumvent this limitation, allowing us to design $n$-th order differentiators with a predefined UBST for the broader class of signals whose $(n+1)$-th derivative is bounded by a function with bounded logarithmic derivative. Unlike existing methods whose time-varying gain tends to infinity, our approach yields a time-varying gain that remains bounded at convergence time. We show how this last property maintains exact convergence using bounded gains when considering a compact set of initial conditions and improves the algorithm's performance to measurement noise." @default.
- W4362656654 created "2023-04-07" @default.
- W4362656654 creator A5010534287 @default.
- W4362656654 creator A5020188175 @default.
- W4362656654 creator A5054708420 @default.
- W4362656654 creator A5073586828 @default.
- W4362656654 creator A5085634615 @default.
- W4362656654 date "2023-07-01" @default.
- W4362656654 modified "2023-10-03" @default.
- W4362656654 title "An arbitrary-order exact differentiator with predefined convergence time bound for signals with exponential growth bound" @default.
- W4362656654 cites W1551955299 @default.
- W4362656654 cites W1987533436 @default.
- W4362656654 cites W1999558720 @default.
- W4362656654 cites W2030959268 @default.
- W4362656654 cites W2052393761 @default.
- W4362656654 cites W2057820893 @default.
- W4362656654 cites W2064008010 @default.
- W4362656654 cites W2094017264 @default.
- W4362656654 cites W2094087018 @default.
- W4362656654 cites W2097223915 @default.
- W4362656654 cites W2115154181 @default.
- W4362656654 cites W2136196514 @default.
- W4362656654 cites W2154608673 @default.
- W4362656654 cites W2336027515 @default.
- W4362656654 cites W2565925106 @default.
- W4362656654 cites W2607278587 @default.
- W4362656654 cites W2609154869 @default.
- W4362656654 cites W2765545966 @default.
- W4362656654 cites W2765656651 @default.
- W4362656654 cites W2766483584 @default.
- W4362656654 cites W2790207461 @default.
- W4362656654 cites W2791422719 @default.
- W4362656654 cites W2883299057 @default.
- W4362656654 cites W2897783933 @default.
- W4362656654 cites W2908428111 @default.
- W4362656654 cites W2950695488 @default.
- W4362656654 cites W2954039140 @default.
- W4362656654 cites W2970940682 @default.
- W4362656654 cites W3098500127 @default.
- W4362656654 cites W3119145501 @default.
- W4362656654 cites W3148489383 @default.
- W4362656654 cites W3154726795 @default.
- W4362656654 cites W4220689236 @default.
- W4362656654 cites W4244834877 @default.
- W4362656654 cites W4286381971 @default.
- W4362656654 doi "https://doi.org/10.1016/j.automatica.2023.110995" @default.
- W4362656654 hasPublicationYear "2023" @default.
- W4362656654 type Work @default.
- W4362656654 citedByCount "0" @default.
- W4362656654 crossrefType "journal-article" @default.
- W4362656654 hasAuthorship W4362656654A5010534287 @default.
- W4362656654 hasAuthorship W4362656654A5020188175 @default.
- W4362656654 hasAuthorship W4362656654A5054708420 @default.
- W4362656654 hasAuthorship W4362656654A5073586828 @default.
- W4362656654 hasAuthorship W4362656654A5085634615 @default.
- W4362656654 hasBestOaLocation W43626566542 @default.
- W4362656654 hasConcept C106131492 @default.
- W4362656654 hasConcept C12112733 @default.
- W4362656654 hasConcept C126255220 @default.
- W4362656654 hasConcept C127413603 @default.
- W4362656654 hasConcept C133731056 @default.
- W4362656654 hasConcept C134306372 @default.
- W4362656654 hasConcept C14781684 @default.
- W4362656654 hasConcept C151376022 @default.
- W4362656654 hasConcept C154945302 @default.
- W4362656654 hasConcept C160030872 @default.
- W4362656654 hasConcept C162324750 @default.
- W4362656654 hasConcept C22324862 @default.
- W4362656654 hasConcept C2775924081 @default.
- W4362656654 hasConcept C2777303404 @default.
- W4362656654 hasConcept C28826006 @default.
- W4362656654 hasConcept C31972630 @default.
- W4362656654 hasConcept C33923547 @default.
- W4362656654 hasConcept C34388435 @default.
- W4362656654 hasConcept C39927690 @default.
- W4362656654 hasConcept C41008148 @default.
- W4362656654 hasConcept C47446073 @default.
- W4362656654 hasConcept C50522688 @default.
- W4362656654 hasConcept C77553402 @default.
- W4362656654 hasConcept C90377204 @default.
- W4362656654 hasConceptScore W4362656654C106131492 @default.
- W4362656654 hasConceptScore W4362656654C12112733 @default.
- W4362656654 hasConceptScore W4362656654C126255220 @default.
- W4362656654 hasConceptScore W4362656654C127413603 @default.
- W4362656654 hasConceptScore W4362656654C133731056 @default.
- W4362656654 hasConceptScore W4362656654C134306372 @default.
- W4362656654 hasConceptScore W4362656654C14781684 @default.
- W4362656654 hasConceptScore W4362656654C151376022 @default.
- W4362656654 hasConceptScore W4362656654C154945302 @default.
- W4362656654 hasConceptScore W4362656654C160030872 @default.
- W4362656654 hasConceptScore W4362656654C162324750 @default.
- W4362656654 hasConceptScore W4362656654C22324862 @default.
- W4362656654 hasConceptScore W4362656654C2775924081 @default.
- W4362656654 hasConceptScore W4362656654C2777303404 @default.
- W4362656654 hasConceptScore W4362656654C28826006 @default.
- W4362656654 hasConceptScore W4362656654C31972630 @default.
- W4362656654 hasConceptScore W4362656654C33923547 @default.
- W4362656654 hasConceptScore W4362656654C34388435 @default.