Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362658082> ?p ?o ?g. }
- W4362658082 endingPage "26" @default.
- W4362658082 startingPage "1" @default.
- W4362658082 abstract "One of the most well-known anti-targets defining medication cardiotoxicity is the voltage-dependent hERG K + channel, which is well-known for its crucial involvement in cardiac action potential repolarization. Torsades de Pointes, QT prolongation, and sudden death are all caused by hERG (the human Ether-à-go-go-Related Gene) inhibition. There is great interest in creating predictive computational (in silico) tools to identify and weed out potential hERG blockers early in the drug discovery process because testing for hERG liability and the traditional experimental screening are complicated, expensive and time-consuming. This study used 2D descriptors of a large curated dataset of 6766 compounds and machine learning approaches to build robust descriptor-based QSAR and predictive classification models for KCNH2 liability. Decision Tree, Random Forest, Logistic Regression, Ada Boosting, kNN, SVM, Naïve Bayes, neural network and stochastic gradient classification classifier algorithms were used to build classification models. If a compound's IC50 value was between 10 μM and less, it was classified as a blocker (hERG-positive), and if it was more, it was classified as a non-blocker (hERG-negative). Matthew's correlation coefficient formula and F1score were applied to compare and track the developed models' performance. Molecular docking and dynamics studies were performed to understand the cardiotoxicity relating to the hERG-gene. The hERG residues interacting after 100 ns are LEU:697, THR:708, PHE:656, HIS:674, HIS:703, TRP:705 and ASN:709 and the hERG-ligand-16 complex trajectory showed stable behaviour with lesser fluctuations in the entire simulation of 200 ns.Communicated by Ramaswamy H. Sarma." @default.
- W4362658082 created "2023-04-07" @default.
- W4362658082 creator A5010105517 @default.
- W4362658082 creator A5014827112 @default.
- W4362658082 creator A5016421385 @default.
- W4362658082 creator A5068258830 @default.
- W4362658082 creator A5078120130 @default.
- W4362658082 creator A5081764697 @default.
- W4362658082 date "2023-04-05" @default.
- W4362658082 modified "2023-09-27" @default.
- W4362658082 title "Machine-learning technique, QSAR and molecular dynamics for hERG–drug interactions" @default.
- W4362658082 cites W1966959008 @default.
- W4362658082 cites W1978330227 @default.
- W4362658082 cites W1979653010 @default.
- W4362658082 cites W1981447470 @default.
- W4362658082 cites W1989273897 @default.
- W4362658082 cites W1997218466 @default.
- W4362658082 cites W1999095775 @default.
- W4362658082 cites W2006671852 @default.
- W4362658082 cites W2008764714 @default.
- W4362658082 cites W2017727128 @default.
- W4362658082 cites W2019604882 @default.
- W4362658082 cites W2025538419 @default.
- W4362658082 cites W2035742760 @default.
- W4362658082 cites W2037749168 @default.
- W4362658082 cites W2043113066 @default.
- W4362658082 cites W2046577762 @default.
- W4362658082 cites W2066557345 @default.
- W4362658082 cites W2088844236 @default.
- W4362658082 cites W2097582882 @default.
- W4362658082 cites W2104900375 @default.
- W4362658082 cites W2110820547 @default.
- W4362658082 cites W2131308754 @default.
- W4362658082 cites W2134670392 @default.
- W4362658082 cites W2136188768 @default.
- W4362658082 cites W2136682738 @default.
- W4362658082 cites W2138266550 @default.
- W4362658082 cites W2264043469 @default.
- W4362658082 cites W2316394276 @default.
- W4362658082 cites W2519801594 @default.
- W4362658082 cites W2594507126 @default.
- W4362658082 cites W2607224862 @default.
- W4362658082 cites W2741146971 @default.
- W4362658082 cites W2804885211 @default.
- W4362658082 cites W2893655420 @default.
- W4362658082 cites W2901204792 @default.
- W4362658082 cites W2907075557 @default.
- W4362658082 cites W2914969288 @default.
- W4362658082 cites W2961108513 @default.
- W4362658082 cites W2971801381 @default.
- W4362658082 cites W2979054698 @default.
- W4362658082 cites W2991351266 @default.
- W4362658082 cites W2998299566 @default.
- W4362658082 cites W3001488402 @default.
- W4362658082 cites W3027697420 @default.
- W4362658082 cites W3033684458 @default.
- W4362658082 cites W3081864586 @default.
- W4362658082 cites W3089615489 @default.
- W4362658082 cites W3121898742 @default.
- W4362658082 cites W3186606843 @default.
- W4362658082 cites W3196868860 @default.
- W4362658082 cites W4244796991 @default.
- W4362658082 cites W4296174507 @default.
- W4362658082 cites W4296625350 @default.
- W4362658082 doi "https://doi.org/10.1080/07391102.2023.2193641" @default.
- W4362658082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37021352" @default.
- W4362658082 hasPublicationYear "2023" @default.
- W4362658082 type Work @default.
- W4362658082 citedByCount "1" @default.
- W4362658082 countsByYear W43626580822023 @default.
- W4362658082 crossrefType "journal-article" @default.
- W4362658082 hasAuthorship W4362658082A5010105517 @default.
- W4362658082 hasAuthorship W4362658082A5014827112 @default.
- W4362658082 hasAuthorship W4362658082A5016421385 @default.
- W4362658082 hasAuthorship W4362658082A5068258830 @default.
- W4362658082 hasAuthorship W4362658082A5078120130 @default.
- W4362658082 hasAuthorship W4362658082A5081764697 @default.
- W4362658082 hasConcept C104317684 @default.
- W4362658082 hasConcept C118441451 @default.
- W4362658082 hasConcept C119857082 @default.
- W4362658082 hasConcept C12267149 @default.
- W4362658082 hasConcept C126322002 @default.
- W4362658082 hasConcept C154945302 @default.
- W4362658082 hasConcept C164085508 @default.
- W4362658082 hasConcept C164126121 @default.
- W4362658082 hasConcept C185592680 @default.
- W4362658082 hasConcept C2775905019 @default.
- W4362658082 hasConcept C2779362680 @default.
- W4362658082 hasConcept C2780486423 @default.
- W4362658082 hasConcept C41008148 @default.
- W4362658082 hasConcept C52001869 @default.
- W4362658082 hasConcept C55493867 @default.
- W4362658082 hasConcept C60644358 @default.
- W4362658082 hasConcept C70721500 @default.
- W4362658082 hasConcept C71924100 @default.
- W4362658082 hasConcept C74187038 @default.
- W4362658082 hasConcept C83743174 @default.
- W4362658082 hasConcept C86803240 @default.