Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362667733> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4362667733 endingPage "459" @default.
- W4362667733 startingPage "459" @default.
- W4362667733 abstract "This paper presents a novel torque vectoring control (TVC) method for four in-wheel-motor independent-drive electric vehicles that considers both energy-saving and safety performance using deep reinforcement learning (RL). Firstly, the tire model is identified using the Fibonacci tree optimization algorithm, and a hierarchical torque vectoring control scheme is designed based on a nonlinear seven-degree-of-freedom vehicle model. This control structure comprises an active safety control layer and a torque allocation layer based on RL. The active safety control layer provides a torque reference for the torque allocation layer to allocate torque while considering both energy-saving and safety performance. Specifically, a new heuristic random ensembled double Q-learning RL algorithm is proposed to calculate the optimal torque allocation for all driving conditions. Finally, numerical experiments are conducted under different driving conditions to validate the effectiveness of the proposed TVC method. Through comparative studies, we emphasize that the novel TVC method outperforms many existing related control results in improving vehicle safety and energy savings, as well as reducing driver workload." @default.
- W4362667733 created "2023-04-07" @default.
- W4362667733 creator A5027786208 @default.
- W4362667733 creator A5049808046 @default.
- W4362667733 creator A5078959583 @default.
- W4362667733 creator A5084719104 @default.
- W4362667733 date "2023-04-06" @default.
- W4362667733 modified "2023-10-15" @default.
- W4362667733 title "Deep Reinforcement Learning-Based Torque Vectoring Control Considering Economy and Safety" @default.
- W4362667733 cites W1971910275 @default.
- W4362667733 cites W2044494131 @default.
- W4362667733 cites W2072552254 @default.
- W4362667733 cites W2123675046 @default.
- W4362667733 cites W2174765655 @default.
- W4362667733 cites W2345026604 @default.
- W4362667733 cites W2595738348 @default.
- W4362667733 cites W2766422573 @default.
- W4362667733 cites W2768140565 @default.
- W4362667733 cites W2889773622 @default.
- W4362667733 cites W2901123804 @default.
- W4362667733 cites W2905093851 @default.
- W4362667733 cites W2907586505 @default.
- W4362667733 cites W2942559997 @default.
- W4362667733 cites W2965605720 @default.
- W4362667733 cites W2968626622 @default.
- W4362667733 cites W2990564420 @default.
- W4362667733 cites W3049713239 @default.
- W4362667733 cites W3083151240 @default.
- W4362667733 cites W3090027660 @default.
- W4362667733 cites W3113932958 @default.
- W4362667733 cites W3127561923 @default.
- W4362667733 cites W3154227779 @default.
- W4362667733 cites W3156525806 @default.
- W4362667733 cites W3168590294 @default.
- W4362667733 cites W3189616650 @default.
- W4362667733 cites W3212993431 @default.
- W4362667733 cites W4226253395 @default.
- W4362667733 cites W4226300854 @default.
- W4362667733 cites W4317761472 @default.
- W4362667733 doi "https://doi.org/10.3390/machines11040459" @default.
- W4362667733 hasPublicationYear "2023" @default.
- W4362667733 type Work @default.
- W4362667733 citedByCount "0" @default.
- W4362667733 crossrefType "journal-article" @default.
- W4362667733 hasAuthorship W4362667733A5027786208 @default.
- W4362667733 hasAuthorship W4362667733A5049808046 @default.
- W4362667733 hasAuthorship W4362667733A5078959583 @default.
- W4362667733 hasAuthorship W4362667733A5084719104 @default.
- W4362667733 hasBestOaLocation W43626677331 @default.
- W4362667733 hasConcept C111919701 @default.
- W4362667733 hasConcept C121332964 @default.
- W4362667733 hasConcept C127413603 @default.
- W4362667733 hasConcept C144171764 @default.
- W4362667733 hasConcept C154945302 @default.
- W4362667733 hasConcept C171146098 @default.
- W4362667733 hasConcept C173801870 @default.
- W4362667733 hasConcept C2775924081 @default.
- W4362667733 hasConcept C2778476105 @default.
- W4362667733 hasConcept C41008148 @default.
- W4362667733 hasConcept C47446073 @default.
- W4362667733 hasConcept C97355855 @default.
- W4362667733 hasConcept C97541855 @default.
- W4362667733 hasConceptScore W4362667733C111919701 @default.
- W4362667733 hasConceptScore W4362667733C121332964 @default.
- W4362667733 hasConceptScore W4362667733C127413603 @default.
- W4362667733 hasConceptScore W4362667733C144171764 @default.
- W4362667733 hasConceptScore W4362667733C154945302 @default.
- W4362667733 hasConceptScore W4362667733C171146098 @default.
- W4362667733 hasConceptScore W4362667733C173801870 @default.
- W4362667733 hasConceptScore W4362667733C2775924081 @default.
- W4362667733 hasConceptScore W4362667733C2778476105 @default.
- W4362667733 hasConceptScore W4362667733C41008148 @default.
- W4362667733 hasConceptScore W4362667733C47446073 @default.
- W4362667733 hasConceptScore W4362667733C97355855 @default.
- W4362667733 hasConceptScore W4362667733C97541855 @default.
- W4362667733 hasFunder F4320321001 @default.
- W4362667733 hasFunder F4320335787 @default.
- W4362667733 hasIssue "4" @default.
- W4362667733 hasLocation W43626677331 @default.
- W4362667733 hasOpenAccess W4362667733 @default.
- W4362667733 hasPrimaryLocation W43626677331 @default.
- W4362667733 hasRelatedWork W2351234071 @default.
- W4362667733 hasRelatedWork W2899084033 @default.
- W4362667733 hasRelatedWork W2923653485 @default.
- W4362667733 hasRelatedWork W2952472710 @default.
- W4362667733 hasRelatedWork W2957776456 @default.
- W4362667733 hasRelatedWork W4206669594 @default.
- W4362667733 hasRelatedWork W4225130168 @default.
- W4362667733 hasRelatedWork W4255994452 @default.
- W4362667733 hasRelatedWork W4319773215 @default.
- W4362667733 hasRelatedWork W4361026739 @default.
- W4362667733 hasVolume "11" @default.
- W4362667733 isParatext "false" @default.
- W4362667733 isRetracted "false" @default.
- W4362667733 workType "article" @default.