Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362670360> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4362670360 endingPage "157" @default.
- W4362670360 startingPage "151" @default.
- W4362670360 abstract "Consumers tends to purchase white wines based only on their taste and price due to the difficulty of studying the composition of white wine. Popular classifications of white wines are usually depending on some easily understandable aspects such as carbon dioxide pressure and grape harvest time. A detailed way to classify the quality of the white wines is needed for both the consumers and the market regulators. In this research, a white wine dataset with 11 parameters and a final quality value is being used to train the machine learning models for future prediction. To avoid extreme values influencing the dataset, this paper used the Interquartile Range method to remove the outliers. After processing the data, six machine learning models were applied to the dataset to test the initial accuracies of the models. The Random Forest had the best accuracy among all the models. Then the focus of the research turned into the feature importance of the Decision Tree and Random Forest methods. The project found out that it is possible to remove one of the parameters from two parameters that have similar importance while maintaining almost the same model accuracy. Both models’ parameter number were reduced to nine instead of 11 at the cost of less than 3% of accuracy. This provides people a useful way to make their analyzing processes easier in machine learning research." @default.
- W4362670360 created "2023-04-07" @default.
- W4362670360 creator A5006008836 @default.
- W4362670360 date "2023-03-30" @default.
- W4362670360 modified "2023-10-05" @default.
- W4362670360 title "White Wine Quality Prediction and Feature Importance Analysis Based on Chemical Composition and Machine Learning Models" @default.
- W4362670360 cites W1964419976 @default.
- W4362670360 cites W2103459159 @default.
- W4362670360 cites W2136132422 @default.
- W4362670360 cites W2782999127 @default.
- W4362670360 doi "https://doi.org/10.54097/hset.v41i.6800" @default.
- W4362670360 hasPublicationYear "2023" @default.
- W4362670360 type Work @default.
- W4362670360 citedByCount "0" @default.
- W4362670360 crossrefType "journal-article" @default.
- W4362670360 hasAuthorship W4362670360A5006008836 @default.
- W4362670360 hasBestOaLocation W43626703601 @default.
- W4362670360 hasConcept C111472728 @default.
- W4362670360 hasConcept C113174947 @default.
- W4362670360 hasConcept C119857082 @default.
- W4362670360 hasConcept C120665830 @default.
- W4362670360 hasConcept C121332964 @default.
- W4362670360 hasConcept C134306372 @default.
- W4362670360 hasConcept C138885662 @default.
- W4362670360 hasConcept C154945302 @default.
- W4362670360 hasConcept C169258074 @default.
- W4362670360 hasConcept C192209626 @default.
- W4362670360 hasConcept C2776401178 @default.
- W4362670360 hasConcept C2779530757 @default.
- W4362670360 hasConcept C2910422012 @default.
- W4362670360 hasConcept C33923547 @default.
- W4362670360 hasConcept C41008148 @default.
- W4362670360 hasConcept C41895202 @default.
- W4362670360 hasConcept C45804977 @default.
- W4362670360 hasConcept C55952523 @default.
- W4362670360 hasConcept C79337645 @default.
- W4362670360 hasConcept C84525736 @default.
- W4362670360 hasConceptScore W4362670360C111472728 @default.
- W4362670360 hasConceptScore W4362670360C113174947 @default.
- W4362670360 hasConceptScore W4362670360C119857082 @default.
- W4362670360 hasConceptScore W4362670360C120665830 @default.
- W4362670360 hasConceptScore W4362670360C121332964 @default.
- W4362670360 hasConceptScore W4362670360C134306372 @default.
- W4362670360 hasConceptScore W4362670360C138885662 @default.
- W4362670360 hasConceptScore W4362670360C154945302 @default.
- W4362670360 hasConceptScore W4362670360C169258074 @default.
- W4362670360 hasConceptScore W4362670360C192209626 @default.
- W4362670360 hasConceptScore W4362670360C2776401178 @default.
- W4362670360 hasConceptScore W4362670360C2779530757 @default.
- W4362670360 hasConceptScore W4362670360C2910422012 @default.
- W4362670360 hasConceptScore W4362670360C33923547 @default.
- W4362670360 hasConceptScore W4362670360C41008148 @default.
- W4362670360 hasConceptScore W4362670360C41895202 @default.
- W4362670360 hasConceptScore W4362670360C45804977 @default.
- W4362670360 hasConceptScore W4362670360C55952523 @default.
- W4362670360 hasConceptScore W4362670360C79337645 @default.
- W4362670360 hasConceptScore W4362670360C84525736 @default.
- W4362670360 hasLocation W43626703601 @default.
- W4362670360 hasOpenAccess W4362670360 @default.
- W4362670360 hasPrimaryLocation W43626703601 @default.
- W4362670360 hasRelatedWork W2969701694 @default.
- W4362670360 hasRelatedWork W3033979565 @default.
- W4362670360 hasRelatedWork W3112290855 @default.
- W4362670360 hasRelatedWork W3143658565 @default.
- W4362670360 hasRelatedWork W4281874265 @default.
- W4362670360 hasRelatedWork W4283762323 @default.
- W4362670360 hasRelatedWork W4308191010 @default.
- W4362670360 hasRelatedWork W4318350883 @default.
- W4362670360 hasRelatedWork W4319430680 @default.
- W4362670360 hasRelatedWork W4366151905 @default.
- W4362670360 hasVolume "41" @default.
- W4362670360 isParatext "false" @default.
- W4362670360 isRetracted "false" @default.
- W4362670360 workType "article" @default.