Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362671667> ?p ?o ?g. }
- W4362671667 abstract "Tracking plant water status is a critical step towards the adaptive precision irrigation management of processing tomatoes, one of the most important specialty crops in California. The photochemical reflectance index (PRI) from proximal sensors and the high-resolution unmanned aerial vehicle (UAV) imagery provide an opportunity to monitor the crop water status efficiently. Based on data from an experimental tomato field with intensive aerial and plant-based measurements, we developed random forest machine learning regression models to estimate tomato stem water potential ( ψ stem ), (using observations from proximal sensors and 12-band UAV imagery, respectively, along with weather data. The proximal sensor-based model estimation agreed well with the plant ψ stem with R 2 of 0.74 and mean absolute error (MAE) of 0.63 bars. The model included PRI, normalized difference vegetation index, vapor pressure deficit, and air temperature and tracked well with the seasonal dynamics of ψ stem across different plots. A separate model, built with multiple vegetation indices (VIs) from UAV imagery and weather variables, had an R 2 of 0.81 and MAE of 0.67 bars. The plant-level ψ stem maps generated from UAV imagery closely represented the water status differences of plots under different irrigation treatments and also tracked well the temporal change among flights. PRI was found to be the most important VI in both the proximal sensor- and the UAV-based models, providing critical information on tomato plant water status. This study demonstrated that machine learning models can accurately estimate the water status by integrating PRI, other VIs, and weather data, and thus facilitate data-driven irrigation management for processing tomatoes." @default.
- W4362671667 created "2023-04-07" @default.
- W4362671667 creator A5046855484 @default.
- W4362671667 creator A5058979424 @default.
- W4362671667 creator A5071406439 @default.
- W4362671667 creator A5073040142 @default.
- W4362671667 date "2023-04-06" @default.
- W4362671667 modified "2023-09-27" @default.
- W4362671667 title "Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery" @default.
- W4362671667 cites W1831050183 @default.
- W4362671667 cites W1898091954 @default.
- W4362671667 cites W1964357740 @default.
- W4362671667 cites W1964697047 @default.
- W4362671667 cites W1966780935 @default.
- W4362671667 cites W1968349640 @default.
- W4362671667 cites W1986790245 @default.
- W4362671667 cites W1987026982 @default.
- W4362671667 cites W1989700757 @default.
- W4362671667 cites W1996815738 @default.
- W4362671667 cites W2004733013 @default.
- W4362671667 cites W2007146840 @default.
- W4362671667 cites W2013168618 @default.
- W4362671667 cites W2018454632 @default.
- W4362671667 cites W2025967407 @default.
- W4362671667 cites W2026219386 @default.
- W4362671667 cites W2030233869 @default.
- W4362671667 cites W2055156793 @default.
- W4362671667 cites W2060944210 @default.
- W4362671667 cites W2062982970 @default.
- W4362671667 cites W2068381486 @default.
- W4362671667 cites W2073555669 @default.
- W4362671667 cites W2073976778 @default.
- W4362671667 cites W2078619499 @default.
- W4362671667 cites W2080091930 @default.
- W4362671667 cites W2090312123 @default.
- W4362671667 cites W2094677081 @default.
- W4362671667 cites W2123202939 @default.
- W4362671667 cites W2133125644 @default.
- W4362671667 cites W2143481518 @default.
- W4362671667 cites W2154083639 @default.
- W4362671667 cites W2157005989 @default.
- W4362671667 cites W2163410149 @default.
- W4362671667 cites W2166174464 @default.
- W4362671667 cites W2167997295 @default.
- W4362671667 cites W2172036222 @default.
- W4362671667 cites W2246094482 @default.
- W4362671667 cites W2248139498 @default.
- W4362671667 cites W2261059368 @default.
- W4362671667 cites W2313974443 @default.
- W4362671667 cites W2324011894 @default.
- W4362671667 cites W2398672561 @default.
- W4362671667 cites W2518904328 @default.
- W4362671667 cites W2590379360 @default.
- W4362671667 cites W2728224506 @default.
- W4362671667 cites W2730811962 @default.
- W4362671667 cites W2766295554 @default.
- W4362671667 cites W2787334870 @default.
- W4362671667 cites W2789880648 @default.
- W4362671667 cites W2790861445 @default.
- W4362671667 cites W2800002789 @default.
- W4362671667 cites W2887848592 @default.
- W4362671667 cites W2895108942 @default.
- W4362671667 cites W2902807621 @default.
- W4362671667 cites W2911964244 @default.
- W4362671667 cites W2912977378 @default.
- W4362671667 cites W2922028018 @default.
- W4362671667 cites W2938719000 @default.
- W4362671667 cites W2950334518 @default.
- W4362671667 cites W2983056308 @default.
- W4362671667 cites W2999345012 @default.
- W4362671667 cites W3003925677 @default.
- W4362671667 cites W3022538632 @default.
- W4362671667 cites W3080231369 @default.
- W4362671667 cites W3084320300 @default.
- W4362671667 cites W3102476541 @default.
- W4362671667 cites W3119434569 @default.
- W4362671667 cites W3171669011 @default.
- W4362671667 cites W3185810899 @default.
- W4362671667 cites W3193290863 @default.
- W4362671667 cites W4224246655 @default.
- W4362671667 doi "https://doi.org/10.3389/fpls.2023.1057733" @default.
- W4362671667 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37089640" @default.
- W4362671667 hasPublicationYear "2023" @default.
- W4362671667 type Work @default.
- W4362671667 citedByCount "1" @default.
- W4362671667 countsByYear W43626716672023 @default.
- W4362671667 crossrefType "journal-article" @default.
- W4362671667 hasAuthorship W4362671667A5046855484 @default.
- W4362671667 hasAuthorship W4362671667A5058979424 @default.
- W4362671667 hasAuthorship W4362671667A5071406439 @default.
- W4362671667 hasAuthorship W4362671667A5073040142 @default.
- W4362671667 hasBestOaLocation W43626716671 @default.
- W4362671667 hasConcept C127313418 @default.
- W4362671667 hasConcept C142724271 @default.
- W4362671667 hasConcept C14331020 @default.
- W4362671667 hasConcept C154945302 @default.
- W4362671667 hasConcept C157517311 @default.
- W4362671667 hasConcept C169258074 @default.
- W4362671667 hasConcept C183688256 @default.
- W4362671667 hasConcept C185592680 @default.