Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362672011> ?p ?o ?g. }
- W4362672011 abstract "Organ-at-risk segmentation for head and neck cancer radiation therapy is a complex and time-consuming process (requiring up to 42 individual structure, and may delay start of treatment or even limit access to function-preserving care. Feasibility of using a deep learning (DL) based autosegmentation model to reduce contouring time without compromising contour accuracy is assessed through a blinded randomized trial of radiation oncologists (ROs) using retrospective, de-identified patient data.Two head and neck expert ROs used dedicated time to create gold standard (GS) contours on computed tomography (CT) images. 445 CTs were used to train a custom 3D U-Net DL model covering 42 organs-at-risk, with an additional 20 CTs were held out for the randomized trial. For each held-out patient dataset, one of the eight participant ROs was randomly allocated to review and revise the contours produced by the DL model, while another reviewed contours produced by a medical dosimetry assistant (MDA), both blinded to their origin. Time required for MDAs and ROs to contour was recorded, and the unrevised DL contours, as well as the RO-revised contours by the MDAs and DL model were compared to the GS for that patient.Mean time for initial MDA contouring was 2.3 hours (range 1.6-3.8 hours) and RO-revision took 1.1 hours (range, 0.4-4.4 hours), compared to 0.7 hours (range 0.1-2.0 hours) for the RO-revisions to DL contours. Total time reduced by 76% (95%-Confidence Interval: 65%-88%) and RO-revision time reduced by 35% (95%-CI,-39%-91%). All geometric and dosimetric metrics computed, agreement with GS was equivalent or significantly greater (p<0.05) for RO-revised DL contours compared to the RO-revised MDA contours, including volumetric Dice similarity coefficient (VDSC), surface DSC, added path length, and the 95%-Hausdorff distance. 32 OARs (76%) had mean VDSC greater than 0.8 for the RO-revised DL contours, compared to 20 (48%) for RO-revised MDA contours, and 34 (81%) for the unrevised DL OARs.DL autosegmentation demonstrated significant time-savings for organ-at-risk contouring while improving agreement with the institutional GS, indicating comparable accuracy of DL model. Integration into the clinical practice with a prospective evaluation is currently underway." @default.
- W4362672011 created "2023-04-07" @default.
- W4362672011 creator A5002573857 @default.
- W4362672011 creator A5014168827 @default.
- W4362672011 creator A5015046531 @default.
- W4362672011 creator A5022377551 @default.
- W4362672011 creator A5036315199 @default.
- W4362672011 creator A5038981517 @default.
- W4362672011 creator A5039358235 @default.
- W4362672011 creator A5040012120 @default.
- W4362672011 creator A5047386765 @default.
- W4362672011 creator A5052777541 @default.
- W4362672011 creator A5054901373 @default.
- W4362672011 creator A5057140698 @default.
- W4362672011 creator A5058612735 @default.
- W4362672011 creator A5059390277 @default.
- W4362672011 creator A5061140709 @default.
- W4362672011 creator A5064450828 @default.
- W4362672011 creator A5068435844 @default.
- W4362672011 creator A5071637634 @default.
- W4362672011 creator A5074351809 @default.
- W4362672011 creator A5083170859 @default.
- W4362672011 creator A5084764805 @default.
- W4362672011 creator A5089100421 @default.
- W4362672011 creator A5090812845 @default.
- W4362672011 creator A5091817297 @default.
- W4362672011 date "2023-04-06" @default.
- W4362672011 modified "2023-10-14" @default.
- W4362672011 title "Validation of clinical acceptability of deep-learning-based automated segmentation of organs-at-risk for head-and-neck radiotherapy treatment planning" @default.
- W4362672011 cites W1217833970 @default.
- W4362672011 cites W1649893202 @default.
- W4362672011 cites W1909740415 @default.
- W4362672011 cites W1974237660 @default.
- W4362672011 cites W2112884386 @default.
- W4362672011 cites W2144674549 @default.
- W4362672011 cites W2151905266 @default.
- W4362672011 cites W2161501889 @default.
- W4362672011 cites W2164437838 @default.
- W4362672011 cites W2164718209 @default.
- W4362672011 cites W2173072896 @default.
- W4362672011 cites W2226272315 @default.
- W4362672011 cites W2401092174 @default.
- W4362672011 cites W2526019331 @default.
- W4362672011 cites W2560725027 @default.
- W4362672011 cites W2765887414 @default.
- W4362672011 cites W2774576524 @default.
- W4362672011 cites W2790133759 @default.
- W4362672011 cites W2792155504 @default.
- W4362672011 cites W2801193650 @default.
- W4362672011 cites W2809628938 @default.
- W4362672011 cites W2885477007 @default.
- W4362672011 cites W2888667538 @default.
- W4362672011 cites W2897157532 @default.
- W4362672011 cites W2897297550 @default.
- W4362672011 cites W2900677237 @default.
- W4362672011 cites W2919730228 @default.
- W4362672011 cites W2920291762 @default.
- W4362672011 cites W2921073881 @default.
- W4362672011 cites W2924973940 @default.
- W4362672011 cites W2940098913 @default.
- W4362672011 cites W2941434555 @default.
- W4362672011 cites W2946394741 @default.
- W4362672011 cites W2972534068 @default.
- W4362672011 cites W2974851778 @default.
- W4362672011 cites W2975885948 @default.
- W4362672011 cites W2978708129 @default.
- W4362672011 cites W2979472178 @default.
- W4362672011 cites W2982147221 @default.
- W4362672011 cites W2986021933 @default.
- W4362672011 cites W2991533698 @default.
- W4362672011 cites W2991554866 @default.
- W4362672011 cites W2994739006 @default.
- W4362672011 cites W2998663558 @default.
- W4362672011 cites W3000603055 @default.
- W4362672011 cites W3006905011 @default.
- W4362672011 cites W3008512199 @default.
- W4362672011 cites W3027343430 @default.
- W4362672011 cites W3033944192 @default.
- W4362672011 cites W3041894125 @default.
- W4362672011 cites W3081423662 @default.
- W4362672011 cites W3096947210 @default.
- W4362672011 cites W3128646645 @default.
- W4362672011 cites W3159307920 @default.
- W4362672011 cites W3164969906 @default.
- W4362672011 cites W3172681723 @default.
- W4362672011 cites W3174454785 @default.
- W4362672011 cites W3180629942 @default.
- W4362672011 cites W3187702971 @default.
- W4362672011 cites W3193917738 @default.
- W4362672011 cites W3216040544 @default.
- W4362672011 cites W4200505986 @default.
- W4362672011 cites W4210264407 @default.
- W4362672011 cites W4288110780 @default.
- W4362672011 cites W4293421050 @default.
- W4362672011 cites W4307896952 @default.
- W4362672011 doi "https://doi.org/10.3389/fonc.2023.1137803" @default.
- W4362672011 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37091160" @default.
- W4362672011 hasPublicationYear "2023" @default.
- W4362672011 type Work @default.
- W4362672011 citedByCount "0" @default.