Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362672912> ?p ?o ?g. }
- W4362672912 abstract "The successful use of machine learning (ML) for medical diagnostic purposes has prompted myriad applications in cancer image analysis. Particularly for hepatocellular carcinoma (HCC) grading, there has been a surge of interest in ML-based selection of the discriminative features from high-dimensional magnetic resonance imaging (MRI) radiomics data. As one of the most commonly used ML-based selection methods, the least absolute shrinkage and selection operator (LASSO) has high discriminative power of the essential feature based on linear representation between input features and output labels. However, most LASSO methods directly explore the original training data rather than effectively exploiting the most informative features of radiomics data for HCC grading. To overcome this limitation, this study marks the first attempt to propose a feature selection method based on LASSO with dictionary learning, where a dictionary is learned from the training features, using the Fisher ratio to maximize the discriminative information in the feature.This study proposes a LASSO method with dictionary learning to ensure the accuracy and discrimination of feature selection. Specifically, based on the Fisher ratio score, each radiomic feature is classified into two groups: the high-information and the low-information group. Then, a dictionary is learned through an optimal mapping matrix to enhance the high-information part and suppress the low discriminative information for the task of HCC grading. Finally, we select the most discrimination features according to the LASSO coefficients based on the learned dictionary.The experimental results based on two classifiers (KNN and SVM) showed that the proposed method yielded accuracy gains, compared favorably with another 5 state-of-the-practice feature selection methods." @default.
- W4362672912 created "2023-04-07" @default.
- W4362672912 creator A5036058812 @default.
- W4362672912 creator A5039360390 @default.
- W4362672912 creator A5043824632 @default.
- W4362672912 creator A5044249258 @default.
- W4362672912 creator A5045031529 @default.
- W4362672912 creator A5046078938 @default.
- W4362672912 creator A5069612314 @default.
- W4362672912 creator A5088633828 @default.
- W4362672912 date "2023-04-06" @default.
- W4362672912 modified "2023-10-16" @default.
- W4362672912 title "Dictionary learning LASSO for feature selection with application to hepatocellular carcinoma grading using contrast enhanced magnetic resonance imaging" @default.
- W4362672912 cites W1903237379 @default.
- W4362672912 cites W1972675532 @default.
- W4362672912 cites W1973771202 @default.
- W4362672912 cites W2024674016 @default.
- W4362672912 cites W2036939717 @default.
- W4362672912 cites W2082253221 @default.
- W4362672912 cites W2095649738 @default.
- W4362672912 cites W2103407801 @default.
- W4362672912 cites W2111892567 @default.
- W4362672912 cites W2331809639 @default.
- W4362672912 cites W2366536035 @default.
- W4362672912 cites W2529138057 @default.
- W4362672912 cites W2550446298 @default.
- W4362672912 cites W2765375430 @default.
- W4362672912 cites W2791216463 @default.
- W4362672912 cites W2803760365 @default.
- W4362672912 cites W2810871994 @default.
- W4362672912 cites W2893608205 @default.
- W4362672912 cites W2900204660 @default.
- W4362672912 cites W2909862814 @default.
- W4362672912 cites W2912031002 @default.
- W4362672912 cites W2922464461 @default.
- W4362672912 cites W2944829429 @default.
- W4362672912 cites W2945017572 @default.
- W4362672912 cites W2980580024 @default.
- W4362672912 cites W2987317021 @default.
- W4362672912 cites W2993640809 @default.
- W4362672912 cites W3080749984 @default.
- W4362672912 cites W3111734687 @default.
- W4362672912 cites W3112295832 @default.
- W4362672912 cites W3146467621 @default.
- W4362672912 cites W3152280602 @default.
- W4362672912 cites W3174648082 @default.
- W4362672912 cites W3178506784 @default.
- W4362672912 cites W3196626243 @default.
- W4362672912 cites W3197619012 @default.
- W4362672912 cites W3217751728 @default.
- W4362672912 cites W4206173327 @default.
- W4362672912 cites W4207069789 @default.
- W4362672912 cites W4210774372 @default.
- W4362672912 cites W4288085277 @default.
- W4362672912 cites W4306732147 @default.
- W4362672912 doi "https://doi.org/10.3389/fonc.2023.1123493" @default.
- W4362672912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37091168" @default.
- W4362672912 hasPublicationYear "2023" @default.
- W4362672912 type Work @default.
- W4362672912 citedByCount "0" @default.
- W4362672912 crossrefType "journal-article" @default.
- W4362672912 hasAuthorship W4362672912A5036058812 @default.
- W4362672912 hasAuthorship W4362672912A5039360390 @default.
- W4362672912 hasAuthorship W4362672912A5043824632 @default.
- W4362672912 hasAuthorship W4362672912A5044249258 @default.
- W4362672912 hasAuthorship W4362672912A5045031529 @default.
- W4362672912 hasAuthorship W4362672912A5046078938 @default.
- W4362672912 hasAuthorship W4362672912A5069612314 @default.
- W4362672912 hasAuthorship W4362672912A5088633828 @default.
- W4362672912 hasBestOaLocation W43626729121 @default.
- W4362672912 hasConcept C119857082 @default.
- W4362672912 hasConcept C12267149 @default.
- W4362672912 hasConcept C127413603 @default.
- W4362672912 hasConcept C136764020 @default.
- W4362672912 hasConcept C147176958 @default.
- W4362672912 hasConcept C148483581 @default.
- W4362672912 hasConcept C153180895 @default.
- W4362672912 hasConcept C154945302 @default.
- W4362672912 hasConcept C2777286243 @default.
- W4362672912 hasConcept C37616216 @default.
- W4362672912 hasConcept C41008148 @default.
- W4362672912 hasConcept C97931131 @default.
- W4362672912 hasConceptScore W4362672912C119857082 @default.
- W4362672912 hasConceptScore W4362672912C12267149 @default.
- W4362672912 hasConceptScore W4362672912C127413603 @default.
- W4362672912 hasConceptScore W4362672912C136764020 @default.
- W4362672912 hasConceptScore W4362672912C147176958 @default.
- W4362672912 hasConceptScore W4362672912C148483581 @default.
- W4362672912 hasConceptScore W4362672912C153180895 @default.
- W4362672912 hasConceptScore W4362672912C154945302 @default.
- W4362672912 hasConceptScore W4362672912C2777286243 @default.
- W4362672912 hasConceptScore W4362672912C37616216 @default.
- W4362672912 hasConceptScore W4362672912C41008148 @default.
- W4362672912 hasConceptScore W4362672912C97931131 @default.
- W4362672912 hasLocation W43626729121 @default.
- W4362672912 hasLocation W43626729122 @default.
- W4362672912 hasLocation W43626729123 @default.
- W4362672912 hasOpenAccess W4362672912 @default.
- W4362672912 hasPrimaryLocation W43626729121 @default.
- W4362672912 hasRelatedWork W1972656095 @default.