Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362676370> ?p ?o ?g. }
- W4362676370 endingPage "100228" @default.
- W4362676370 startingPage "100228" @default.
- W4362676370 abstract "The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) virus spread the novel CoronaVirus −19 (nCoV-19) pandemic, resulting in millions of fatalities globally. Recent research demonstrated that the Protein-Protein Interaction (PPI) between SARS-CoV-2 and human proteins is accountable for viral pathogenesis. However, many of these PPIs are poorly understood and unexplored, necessitating a more in-depth investigation to find latent yet critical interactions. This article elucidates the host-viral PPI through Machine Learning (ML) lenses and validates the biological significance of the same using web-based tools. ML classifiers are designed based on comprehensive datasets with five sequence-based features of human proteins, namely Amino Acid Composition, Pseudo Amino Acid Composition, Conjoint Triad, Dipeptide Composition, and Normalized Auto Correlation. A majority voting rule-based ensemble method composed of the Random Forest Model (RFM), AdaBoost, and Bagging technique is proposed that delivers encouraging statistical performance compared to other models employed in this work. The proposed ensemble model predicted a total of 111 possible SARS-CoV-2 human target proteins with a high likelihood factor ≥70%, validated by utilizing Gene Ontology (GO) and KEGG pathway enrichment analysis. Consequently, this research can aid in a deeper understanding of the molecular mechanisms underlying viral pathogenesis and provide clues for developing more efficient anti-COVID medications." @default.
- W4362676370 created "2023-04-07" @default.
- W4362676370 creator A5013897423 @default.
- W4362676370 creator A5039529562 @default.
- W4362676370 creator A5051565951 @default.
- W4362676370 creator A5056801485 @default.
- W4362676370 creator A5063722727 @default.
- W4362676370 date "2023-06-01" @default.
- W4362676370 modified "2023-10-14" @default.
- W4362676370 title "Determining human-coronavirus protein-protein interaction using machine intelligence" @default.
- W4362676370 cites W1518822923 @default.
- W4362676370 cites W1634137187 @default.
- W4362676370 cites W1967320885 @default.
- W4362676370 cites W1970008650 @default.
- W4362676370 cites W1982267716 @default.
- W4362676370 cites W1983079600 @default.
- W4362676370 cites W1987582651 @default.
- W4362676370 cites W1993595811 @default.
- W4362676370 cites W1994861534 @default.
- W4362676370 cites W1995341919 @default.
- W4362676370 cites W1995932087 @default.
- W4362676370 cites W2005589083 @default.
- W4362676370 cites W2034820353 @default.
- W4362676370 cites W2039473152 @default.
- W4362676370 cites W2058539819 @default.
- W4362676370 cites W2077574406 @default.
- W4362676370 cites W2078999665 @default.
- W4362676370 cites W2096869738 @default.
- W4362676370 cites W2097928187 @default.
- W4362676370 cites W2099749803 @default.
- W4362676370 cites W2104972430 @default.
- W4362676370 cites W2117897510 @default.
- W4362676370 cites W2122863289 @default.
- W4362676370 cites W2134672568 @default.
- W4362676370 cites W2142912491 @default.
- W4362676370 cites W2145957695 @default.
- W4362676370 cites W2150782426 @default.
- W4362676370 cites W2152705149 @default.
- W4362676370 cites W2156269526 @default.
- W4362676370 cites W2159126118 @default.
- W4362676370 cites W2182431911 @default.
- W4362676370 cites W2306794997 @default.
- W4362676370 cites W2344144945 @default.
- W4362676370 cites W2424628474 @default.
- W4362676370 cites W2470646526 @default.
- W4362676370 cites W2594569350 @default.
- W4362676370 cites W2618265628 @default.
- W4362676370 cites W2729589316 @default.
- W4362676370 cites W2748251752 @default.
- W4362676370 cites W2767227490 @default.
- W4362676370 cites W2911964244 @default.
- W4362676370 cites W2938387327 @default.
- W4362676370 cites W2940563585 @default.
- W4362676370 cites W2947042515 @default.
- W4362676370 cites W2953275535 @default.
- W4362676370 cites W2954788759 @default.
- W4362676370 cites W2972038900 @default.
- W4362676370 cites W2998220730 @default.
- W4362676370 cites W2998799485 @default.
- W4362676370 cites W3000413850 @default.
- W4362676370 cites W3001897055 @default.
- W4362676370 cites W3002108456 @default.
- W4362676370 cites W3003217347 @default.
- W4362676370 cites W3003668884 @default.
- W4362676370 cites W3008491765 @default.
- W4362676370 cites W3009155494 @default.
- W4362676370 cites W3016353786 @default.
- W4362676370 cites W3022285953 @default.
- W4362676370 cites W3033326712 @default.
- W4362676370 cites W3038925693 @default.
- W4362676370 cites W3046413668 @default.
- W4362676370 cites W3049217786 @default.
- W4362676370 cites W3081689004 @default.
- W4362676370 cites W3091588562 @default.
- W4362676370 cites W3091952751 @default.
- W4362676370 cites W3093053585 @default.
- W4362676370 cites W3093878807 @default.
- W4362676370 cites W3095124560 @default.
- W4362676370 cites W3112376646 @default.
- W4362676370 cites W3116842563 @default.
- W4362676370 cites W3119464161 @default.
- W4362676370 cites W3120634523 @default.
- W4362676370 cites W3120945293 @default.
- W4362676370 cites W3124360307 @default.
- W4362676370 cites W3135853802 @default.
- W4362676370 cites W3164555883 @default.
- W4362676370 cites W3168156287 @default.
- W4362676370 cites W3202924793 @default.
- W4362676370 cites W4206486219 @default.
- W4362676370 doi "https://doi.org/10.1016/j.medntd.2023.100228" @default.
- W4362676370 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37056696" @default.
- W4362676370 hasPublicationYear "2023" @default.
- W4362676370 type Work @default.
- W4362676370 citedByCount "0" @default.
- W4362676370 crossrefType "journal-article" @default.
- W4362676370 hasAuthorship W4362676370A5013897423 @default.
- W4362676370 hasAuthorship W4362676370A5039529562 @default.
- W4362676370 hasAuthorship W4362676370A5051565951 @default.