Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362676848> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4362676848 endingPage "120046" @default.
- W4362676848 startingPage "120046" @default.
- W4362676848 abstract "The quantity of data generated increases daily, which makes it difficult to process. In the case of supervised learning, labeling training examples may represent an especially tedious and costly task. One of the aims of positive and unlabeled (PU) learning is to train a binary classifier from partially labeled data, representing a strategy for combining supervised and semi-supervised learning and alleviating the cost of labeling data fully. Still, the main strength of PU learning arises when the negative data are not directly available or too diverse. Although the generative approaches have shown promising results in this field, they also bring shortcomings, such as high computational cost, training instability, and inability to generate fully labeled datasets. In the paper, we propose a novel Conditional Generative PU framework (CGenPU) with a built-in auxiliary classifier. We develop a novel loss function to learn the distribution of positive and negative examples, which leads to a unique, desirable equilibrium under a nonparametric assumption. Our CGenPU is evaluated against existing generative approaches using both synthetic and real data. The characteristics of various methods, including ours, are depicted with different toy examples. The results demonstrate the state-of-the-art performance on standard positive and unlabeled learning benchmark datasets. Given only ten labeled CIFAR-10 examples, CGenPU achieves classification accuracy of 84%, while current state-of-the-art D-GAN framework achieves 54%. On top of that, CGenPU is the first single-stage generative framework for PU learning." @default.
- W4362676848 created "2023-04-07" @default.
- W4362676848 creator A5045389796 @default.
- W4362676848 creator A5045902697 @default.
- W4362676848 creator A5055260770 @default.
- W4362676848 date "2023-08-01" @default.
- W4362676848 modified "2023-10-14" @default.
- W4362676848 title "Conditional generative positive and unlabeled learning" @default.
- W4362676848 cites W1965555277 @default.
- W4362676848 cites W2739693175 @default.
- W4362676848 cites W2804302007 @default.
- W4362676848 cites W3040627930 @default.
- W4362676848 cites W3094604059 @default.
- W4362676848 cites W3101215053 @default.
- W4362676848 cites W3170548296 @default.
- W4362676848 cites W3177355874 @default.
- W4362676848 cites W4288075321 @default.
- W4362676848 cites W4319748040 @default.
- W4362676848 doi "https://doi.org/10.1016/j.eswa.2023.120046" @default.
- W4362676848 hasPublicationYear "2023" @default.
- W4362676848 type Work @default.
- W4362676848 citedByCount "1" @default.
- W4362676848 countsByYear W43626768482023 @default.
- W4362676848 crossrefType "journal-article" @default.
- W4362676848 hasAuthorship W4362676848A5045389796 @default.
- W4362676848 hasAuthorship W4362676848A5045902697 @default.
- W4362676848 hasAuthorship W4362676848A5055260770 @default.
- W4362676848 hasBestOaLocation W43626768481 @default.
- W4362676848 hasConcept C119857082 @default.
- W4362676848 hasConcept C12267149 @default.
- W4362676848 hasConcept C13280743 @default.
- W4362676848 hasConcept C136389625 @default.
- W4362676848 hasConcept C153180895 @default.
- W4362676848 hasConcept C154945302 @default.
- W4362676848 hasConcept C167966045 @default.
- W4362676848 hasConcept C185798385 @default.
- W4362676848 hasConcept C205649164 @default.
- W4362676848 hasConcept C2776145971 @default.
- W4362676848 hasConcept C39890363 @default.
- W4362676848 hasConcept C41008148 @default.
- W4362676848 hasConcept C50644808 @default.
- W4362676848 hasConcept C58973888 @default.
- W4362676848 hasConcept C66905080 @default.
- W4362676848 hasConcept C95623464 @default.
- W4362676848 hasConceptScore W4362676848C119857082 @default.
- W4362676848 hasConceptScore W4362676848C12267149 @default.
- W4362676848 hasConceptScore W4362676848C13280743 @default.
- W4362676848 hasConceptScore W4362676848C136389625 @default.
- W4362676848 hasConceptScore W4362676848C153180895 @default.
- W4362676848 hasConceptScore W4362676848C154945302 @default.
- W4362676848 hasConceptScore W4362676848C167966045 @default.
- W4362676848 hasConceptScore W4362676848C185798385 @default.
- W4362676848 hasConceptScore W4362676848C205649164 @default.
- W4362676848 hasConceptScore W4362676848C2776145971 @default.
- W4362676848 hasConceptScore W4362676848C39890363 @default.
- W4362676848 hasConceptScore W4362676848C41008148 @default.
- W4362676848 hasConceptScore W4362676848C50644808 @default.
- W4362676848 hasConceptScore W4362676848C58973888 @default.
- W4362676848 hasConceptScore W4362676848C66905080 @default.
- W4362676848 hasConceptScore W4362676848C95623464 @default.
- W4362676848 hasFunder F4320322554 @default.
- W4362676848 hasLocation W43626768481 @default.
- W4362676848 hasLocation W43626768482 @default.
- W4362676848 hasLocation W43626768483 @default.
- W4362676848 hasOpenAccess W4362676848 @default.
- W4362676848 hasPrimaryLocation W43626768481 @default.
- W4362676848 hasRelatedWork W1988412055 @default.
- W4362676848 hasRelatedWork W2151561819 @default.
- W4362676848 hasRelatedWork W2186521550 @default.
- W4362676848 hasRelatedWork W2538661024 @default.
- W4362676848 hasRelatedWork W2770424293 @default.
- W4362676848 hasRelatedWork W2901294615 @default.
- W4362676848 hasRelatedWork W2939325949 @default.
- W4362676848 hasRelatedWork W3162567751 @default.
- W4362676848 hasRelatedWork W4294974824 @default.
- W4362676848 hasRelatedWork W2088769012 @default.
- W4362676848 hasVolume "224" @default.
- W4362676848 isParatext "false" @default.
- W4362676848 isRetracted "false" @default.
- W4362676848 workType "article" @default.