Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362678051> ?p ?o ?g. }
- W4362678051 endingPage "106153" @default.
- W4362678051 startingPage "106153" @default.
- W4362678051 abstract "The use of machine learning techniques in safety research has increased as has the interest in using new data sources. This study’s unique contribution is the application of text mining—focusing on perceived cyclist safety and crash occurrence in an urban environment. We analysed crash data collected by the emergency forces in the Capital Region of Denmark from 2013 to 2017 and self-reported textual data provided by cyclists from 2018 to 2019. The analysis included natural language processing and topic modelling to identify Latent Dirichlet Allocation (LDA) topics from self-reports, representing environment characteristics that cyclists’ perceive as unsafe. A multi-output neural network regression model is applied to predict the injury-severity distribution of cyclists involved in crashes (measured by emergency response level [ERL]) based on the obtained topic distributions together with additional variables like cycle flow. We identified six LDA topics which address buses and cycle paths, conflicts with parked cars, roundabouts and inadequate maintenance, fast-moving cars and lack of cycle path, school zones and heavy traffic, and intersections and interactions with vehicles. Cycle flow was found to be the highest impacter on ERL prediction. However, other factors also impacted ERLs, especially school zones and heavy traffic. The results bring new insights into safety perception and actual safety for cyclists. The results contribute to a novel procedure for the joint correlation analysis using machine learning techniques on self-reported textual data thereby providing a better tool for infrastructure planning. The findings show the importance of including perceived safety in crash modelling and that authorities should focus on safety around schools and in intersections in order to improve safety for cyclists in a urban environment." @default.
- W4362678051 created "2023-04-07" @default.
- W4362678051 creator A5001424439 @default.
- W4362678051 creator A5016432668 @default.
- W4362678051 creator A5057934865 @default.
- W4362678051 creator A5057992797 @default.
- W4362678051 creator A5067554340 @default.
- W4362678051 creator A5078981714 @default.
- W4362678051 date "2023-08-01" @default.
- W4362678051 modified "2023-10-05" @default.
- W4362678051 title "Predicting injury-severity for cyclist crashes using natural language processing and neural network modelling" @default.
- W4362678051 cites W2005241140 @default.
- W4362678051 cites W2039207044 @default.
- W4362678051 cites W2052167354 @default.
- W4362678051 cites W2053415760 @default.
- W4362678051 cites W2069725591 @default.
- W4362678051 cites W2080320538 @default.
- W4362678051 cites W2124729896 @default.
- W4362678051 cites W2133898263 @default.
- W4362678051 cites W2145621017 @default.
- W4362678051 cites W2154239426 @default.
- W4362678051 cites W2162317738 @default.
- W4362678051 cites W2336275516 @default.
- W4362678051 cites W2417144664 @default.
- W4362678051 cites W2549028094 @default.
- W4362678051 cites W2565616856 @default.
- W4362678051 cites W2581957047 @default.
- W4362678051 cites W2607490210 @default.
- W4362678051 cites W2730098834 @default.
- W4362678051 cites W2766283444 @default.
- W4362678051 cites W2789424546 @default.
- W4362678051 cites W2790921206 @default.
- W4362678051 cites W2794595604 @default.
- W4362678051 cites W2863858511 @default.
- W4362678051 cites W2886234956 @default.
- W4362678051 cites W2901705382 @default.
- W4362678051 cites W2908606086 @default.
- W4362678051 cites W3010117736 @default.
- W4362678051 cites W3012434979 @default.
- W4362678051 cites W3030799129 @default.
- W4362678051 cites W3041501058 @default.
- W4362678051 cites W3108110214 @default.
- W4362678051 cites W3108784603 @default.
- W4362678051 cites W3112852538 @default.
- W4362678051 cites W3120391736 @default.
- W4362678051 cites W3169319550 @default.
- W4362678051 cites W3174606026 @default.
- W4362678051 cites W3200619730 @default.
- W4362678051 cites W4200298337 @default.
- W4362678051 cites W4210414415 @default.
- W4362678051 cites W4224882014 @default.
- W4362678051 doi "https://doi.org/10.1016/j.ssci.2023.106153" @default.
- W4362678051 hasPublicationYear "2023" @default.
- W4362678051 type Work @default.
- W4362678051 citedByCount "1" @default.
- W4362678051 countsByYear W43626780512023 @default.
- W4362678051 crossrefType "journal-article" @default.
- W4362678051 hasAuthorship W4362678051A5001424439 @default.
- W4362678051 hasAuthorship W4362678051A5016432668 @default.
- W4362678051 hasAuthorship W4362678051A5057934865 @default.
- W4362678051 hasAuthorship W4362678051A5057992797 @default.
- W4362678051 hasAuthorship W4362678051A5067554340 @default.
- W4362678051 hasAuthorship W4362678051A5078981714 @default.
- W4362678051 hasConcept C119857082 @default.
- W4362678051 hasConcept C127413603 @default.
- W4362678051 hasConcept C154945302 @default.
- W4362678051 hasConcept C166735990 @default.
- W4362678051 hasConcept C171686336 @default.
- W4362678051 hasConcept C17744445 @default.
- W4362678051 hasConcept C183469790 @default.
- W4362678051 hasConcept C187155963 @default.
- W4362678051 hasConcept C190385971 @default.
- W4362678051 hasConcept C199360897 @default.
- W4362678051 hasConcept C199539241 @default.
- W4362678051 hasConcept C22212356 @default.
- W4362678051 hasConcept C3017944768 @default.
- W4362678051 hasConcept C41008148 @default.
- W4362678051 hasConcept C500882744 @default.
- W4362678051 hasConcept C50644808 @default.
- W4362678051 hasConcept C71924100 @default.
- W4362678051 hasConcept C99454951 @default.
- W4362678051 hasConceptScore W4362678051C119857082 @default.
- W4362678051 hasConceptScore W4362678051C127413603 @default.
- W4362678051 hasConceptScore W4362678051C154945302 @default.
- W4362678051 hasConceptScore W4362678051C166735990 @default.
- W4362678051 hasConceptScore W4362678051C171686336 @default.
- W4362678051 hasConceptScore W4362678051C17744445 @default.
- W4362678051 hasConceptScore W4362678051C183469790 @default.
- W4362678051 hasConceptScore W4362678051C187155963 @default.
- W4362678051 hasConceptScore W4362678051C190385971 @default.
- W4362678051 hasConceptScore W4362678051C199360897 @default.
- W4362678051 hasConceptScore W4362678051C199539241 @default.
- W4362678051 hasConceptScore W4362678051C22212356 @default.
- W4362678051 hasConceptScore W4362678051C3017944768 @default.
- W4362678051 hasConceptScore W4362678051C41008148 @default.
- W4362678051 hasConceptScore W4362678051C500882744 @default.
- W4362678051 hasConceptScore W4362678051C50644808 @default.
- W4362678051 hasConceptScore W4362678051C71924100 @default.