Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362679286> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4362679286 abstract "Progress in the application of machine learning (ML) methods to materials design is hindered by the lack of understanding of the reliability of ML predictions, in particular for the application of ML to small data sets often found in materials science. Using ML prediction for transparent conductor oxide formation energy and band gap, dilute solute diffusion, and perovskite formation energy, band gap and lattice parameter as examples, we demonstrate that 1) analysis of ML results by construction of a convex hull in feature space that encloses accurately predicted systems can be used to identify regions in feature space for which ML predictions are highly reliable 2) analysis of the systems enclosed by the convex hull can be used to extract physical understanding and 3) materials that satisfy all well-known chemical and physical principles that make a material physically reasonable are likely to be similar and show strong relationships between the properties of interest and the standard features used in ML. We also show that similar to the composition-structure-property relationships, inclusion in the ML training data set of materials from classes with different chemical properties will not be beneficial and will slightly decrease the accuracy of ML prediction and that reliable results likely will be obtained by ML model for narrow classes of similar materials even in the case where the ML model will show large errors on the dataset consisting of several classes of materials. Our work suggests that analysis of the error distributions of ML predictions will be beneficial for the further development of the application of ML methods in material science." @default.
- W4362679286 created "2023-04-07" @default.
- W4362679286 creator A5013587381 @default.
- W4362679286 creator A5022094533 @default.
- W4362679286 creator A5023247876 @default.
- W4362679286 date "2023-04-05" @default.
- W4362679286 modified "2023-10-01" @default.
- W4362679286 title "Identification of high-reliability regions of machine learning predictions in materials science using transparent conducting oxides and perovskites as examples" @default.
- W4362679286 doi "https://doi.org/10.48550/arxiv.2304.02218" @default.
- W4362679286 hasPublicationYear "2023" @default.
- W4362679286 type Work @default.
- W4362679286 citedByCount "0" @default.
- W4362679286 crossrefType "posted-content" @default.
- W4362679286 hasAuthorship W4362679286A5013587381 @default.
- W4362679286 hasAuthorship W4362679286A5022094533 @default.
- W4362679286 hasAuthorship W4362679286A5023247876 @default.
- W4362679286 hasBestOaLocation W43626792861 @default.
- W4362679286 hasConcept C112680207 @default.
- W4362679286 hasConcept C11413529 @default.
- W4362679286 hasConcept C121332964 @default.
- W4362679286 hasConcept C163258240 @default.
- W4362679286 hasConcept C181966813 @default.
- W4362679286 hasConcept C191897082 @default.
- W4362679286 hasConcept C192562407 @default.
- W4362679286 hasConcept C206194317 @default.
- W4362679286 hasConcept C24890656 @default.
- W4362679286 hasConcept C2524010 @default.
- W4362679286 hasConcept C2779851234 @default.
- W4362679286 hasConcept C2781204021 @default.
- W4362679286 hasConcept C33923547 @default.
- W4362679286 hasConcept C41008148 @default.
- W4362679286 hasConcept C43214815 @default.
- W4362679286 hasConcept C49040817 @default.
- W4362679286 hasConcept C97355855 @default.
- W4362679286 hasConceptScore W4362679286C112680207 @default.
- W4362679286 hasConceptScore W4362679286C11413529 @default.
- W4362679286 hasConceptScore W4362679286C121332964 @default.
- W4362679286 hasConceptScore W4362679286C163258240 @default.
- W4362679286 hasConceptScore W4362679286C181966813 @default.
- W4362679286 hasConceptScore W4362679286C191897082 @default.
- W4362679286 hasConceptScore W4362679286C192562407 @default.
- W4362679286 hasConceptScore W4362679286C206194317 @default.
- W4362679286 hasConceptScore W4362679286C24890656 @default.
- W4362679286 hasConceptScore W4362679286C2524010 @default.
- W4362679286 hasConceptScore W4362679286C2779851234 @default.
- W4362679286 hasConceptScore W4362679286C2781204021 @default.
- W4362679286 hasConceptScore W4362679286C33923547 @default.
- W4362679286 hasConceptScore W4362679286C41008148 @default.
- W4362679286 hasConceptScore W4362679286C43214815 @default.
- W4362679286 hasConceptScore W4362679286C49040817 @default.
- W4362679286 hasConceptScore W4362679286C97355855 @default.
- W4362679286 hasLocation W43626792861 @default.
- W4362679286 hasOpenAccess W4362679286 @default.
- W4362679286 hasPrimaryLocation W43626792861 @default.
- W4362679286 hasRelatedWork W1956597468 @default.
- W4362679286 hasRelatedWork W2002509893 @default.
- W4362679286 hasRelatedWork W2074875059 @default.
- W4362679286 hasRelatedWork W2160116025 @default.
- W4362679286 hasRelatedWork W2373150346 @default.
- W4362679286 hasRelatedWork W3092244581 @default.
- W4362679286 hasRelatedWork W3120847218 @default.
- W4362679286 hasRelatedWork W4289761297 @default.
- W4362679286 hasRelatedWork W4299559676 @default.
- W4362679286 hasRelatedWork W4302176079 @default.
- W4362679286 isParatext "false" @default.
- W4362679286 isRetracted "false" @default.
- W4362679286 workType "article" @default.