Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362682009> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4362682009 abstract "The development of data science has brought about many discussions of noise detection, and so far, there is no universal best method. In this paper, we propose a clustering-algorithm-based solution to identify and remove noise from air pollution data collected with mobile portable sensors. The test dataset is the air pollution data collected by the portable sensors throughout three seasons at the campus in Macao. We have applied and compared six clustering algorithms to identify the most appropriate clustering algorithm to achieve this goal: Simple K-means, Hierarchical Clustering, Cascading K-means, X-means, Expectation Maximization, and Self-Organizing Map. The performance is evaluated by their accuracy and the best number of clusters calculated by the Silhouette Coefficient. Additionally, a classification algorithm J48 tree can extract the key attributes and identify the noise cluster for future unlabeled data that may contain noise. The experiment results indicate that the Expectation Maximization and Cascading Simple K-Means perform the best. Moreover, temperature and carbon dioxide are vital attributes in identifying the noise cluster." @default.
- W4362682009 created "2023-04-08" @default.
- W4362682009 creator A5002844788 @default.
- W4362682009 creator A5044370040 @default.
- W4362682009 creator A5052878834 @default.
- W4362682009 creator A5058849662 @default.
- W4362682009 date "2022-12-18" @default.
- W4362682009 modified "2023-10-14" @default.
- W4362682009 title "Clustering Algorithms based Noise Identification from Air Pollution Monitoring Data" @default.
- W4362682009 cites W1985690171 @default.
- W4362682009 cites W2003853984 @default.
- W4362682009 cites W2009743158 @default.
- W4362682009 cites W2032790727 @default.
- W4362682009 cites W2085487226 @default.
- W4362682009 cites W2124491466 @default.
- W4362682009 cites W2124536999 @default.
- W4362682009 cites W2243299842 @default.
- W4362682009 cites W2493105326 @default.
- W4362682009 cites W2580940240 @default.
- W4362682009 cites W2625736062 @default.
- W4362682009 cites W2734741635 @default.
- W4362682009 cites W2911087020 @default.
- W4362682009 cites W2944642925 @default.
- W4362682009 cites W2973369637 @default.
- W4362682009 cites W3037433942 @default.
- W4362682009 cites W4255949318 @default.
- W4362682009 doi "https://doi.org/10.1109/csde56538.2022.10089276" @default.
- W4362682009 hasPublicationYear "2022" @default.
- W4362682009 type Work @default.
- W4362682009 citedByCount "1" @default.
- W4362682009 countsByYear W43626820092023 @default.
- W4362682009 crossrefType "proceedings-article" @default.
- W4362682009 hasAuthorship W4362682009A5002844788 @default.
- W4362682009 hasAuthorship W4362682009A5044370040 @default.
- W4362682009 hasAuthorship W4362682009A5052878834 @default.
- W4362682009 hasAuthorship W4362682009A5058849662 @default.
- W4362682009 hasConcept C104047586 @default.
- W4362682009 hasConcept C109659709 @default.
- W4362682009 hasConcept C11413529 @default.
- W4362682009 hasConcept C115961682 @default.
- W4362682009 hasConcept C116834253 @default.
- W4362682009 hasConcept C12267149 @default.
- W4362682009 hasConcept C124101348 @default.
- W4362682009 hasConcept C130858481 @default.
- W4362682009 hasConcept C154945302 @default.
- W4362682009 hasConcept C163294075 @default.
- W4362682009 hasConcept C193143536 @default.
- W4362682009 hasConcept C33704608 @default.
- W4362682009 hasConcept C41008148 @default.
- W4362682009 hasConcept C52001869 @default.
- W4362682009 hasConcept C52003472 @default.
- W4362682009 hasConcept C59822182 @default.
- W4362682009 hasConcept C73555534 @default.
- W4362682009 hasConcept C86803240 @default.
- W4362682009 hasConcept C92835128 @default.
- W4362682009 hasConcept C94641424 @default.
- W4362682009 hasConcept C99498987 @default.
- W4362682009 hasConceptScore W4362682009C104047586 @default.
- W4362682009 hasConceptScore W4362682009C109659709 @default.
- W4362682009 hasConceptScore W4362682009C11413529 @default.
- W4362682009 hasConceptScore W4362682009C115961682 @default.
- W4362682009 hasConceptScore W4362682009C116834253 @default.
- W4362682009 hasConceptScore W4362682009C12267149 @default.
- W4362682009 hasConceptScore W4362682009C124101348 @default.
- W4362682009 hasConceptScore W4362682009C130858481 @default.
- W4362682009 hasConceptScore W4362682009C154945302 @default.
- W4362682009 hasConceptScore W4362682009C163294075 @default.
- W4362682009 hasConceptScore W4362682009C193143536 @default.
- W4362682009 hasConceptScore W4362682009C33704608 @default.
- W4362682009 hasConceptScore W4362682009C41008148 @default.
- W4362682009 hasConceptScore W4362682009C52001869 @default.
- W4362682009 hasConceptScore W4362682009C52003472 @default.
- W4362682009 hasConceptScore W4362682009C59822182 @default.
- W4362682009 hasConceptScore W4362682009C73555534 @default.
- W4362682009 hasConceptScore W4362682009C86803240 @default.
- W4362682009 hasConceptScore W4362682009C92835128 @default.
- W4362682009 hasConceptScore W4362682009C94641424 @default.
- W4362682009 hasConceptScore W4362682009C99498987 @default.
- W4362682009 hasLocation W43626820091 @default.
- W4362682009 hasOpenAccess W4362682009 @default.
- W4362682009 hasPrimaryLocation W43626820091 @default.
- W4362682009 hasRelatedWork W1957537378 @default.
- W4362682009 hasRelatedWork W1981651077 @default.
- W4362682009 hasRelatedWork W2004209105 @default.
- W4362682009 hasRelatedWork W2124419093 @default.
- W4362682009 hasRelatedWork W2187953929 @default.
- W4362682009 hasRelatedWork W2362911195 @default.
- W4362682009 hasRelatedWork W2383443657 @default.
- W4362682009 hasRelatedWork W2567087402 @default.
- W4362682009 hasRelatedWork W3168768270 @default.
- W4362682009 hasRelatedWork W4200404937 @default.
- W4362682009 isParatext "false" @default.
- W4362682009 isRetracted "false" @default.
- W4362682009 workType "article" @default.