Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362686543> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4362686543 endingPage "143" @default.
- W4362686543 startingPage "99" @default.
- W4362686543 abstract "In this chapter, we analyzed some applications of deep learning methods to electromagnetic NDT&E and tried to show how deep neural networks can be adapted to different scenarios involving electromagnetic probing waves ranging from the quasi-static regime to microwave. In particular, CNN have been deeply exploited when the treated signals behave as images such as in the case of ECT and MFL inspections where real and imaginary parts of the impedance variation as well as the magnetic flux density are probed. Furthermore, time domain signals as in PECT or GPR measurements have been addressed, too, by employing LSTM-RNN and/or through CNN explicitly adapted for the purpose (e.g., pixel-wise inversion). Our analysis underlined that specifically tailored deep neural architectures have obtained a better prediction performances than pre-trained networks based on state-of-the-art architectures. In fact, the systematic lack of large shared datasets containing labeled measurements of realistic acquisitions makes it difficult to properly benchmark and improve such backbone architectures. Moreover, the difficulties in collecting labeled measurements for defect parameters (e.g., the defect geometry) downsize the practical applications of deep learning models mostly to classification problems.The survey performed in this chapter has also highlighted that the application of deep learning in NDT&E is also going toward the acceleration of numerical forward solvers for NDT&E modeling and simulations in a fully model-driven approach. It is believed that the ability of DL methods to handle problems having large cardinality (e.g., NDT&E parameters such as large number of defect classes, and defect geometry description) will boost the research and its application to time consuming statistical studies (see, e.g., [160,161]). Moreover, our analysis showed that the use of numerical solvers proves useful in designing the most suitable DL schemas as well as in improving the prediction accuracy when a low amount of measurements is available. Finally, a large amount of works in the literature showed that exploitation of deep learning algorithms directly on embedded systems (e.g., FPGA hardware) is already possible without an appreciable degradation in prediction performance." @default.
- W4362686543 created "2023-04-08" @default.
- W4362686543 creator A5010231786 @default.
- W4362686543 creator A5015250548 @default.
- W4362686543 creator A5026934922 @default.
- W4362686543 creator A5043987877 @default.
- W4362686543 creator A5068343216 @default.
- W4362686543 date "2022-12-31" @default.
- W4362686543 modified "2023-09-27" @default.
- W4362686543 title "Deep learning techniques for non-destructive testing and evaluation" @default.
- W4362686543 doi "https://doi.org/10.1049/sbew563e_ch4" @default.
- W4362686543 hasPublicationYear "2022" @default.
- W4362686543 type Work @default.
- W4362686543 citedByCount "0" @default.
- W4362686543 crossrefType "book-chapter" @default.
- W4362686543 hasAuthorship W4362686543A5010231786 @default.
- W4362686543 hasAuthorship W4362686543A5015250548 @default.
- W4362686543 hasAuthorship W4362686543A5026934922 @default.
- W4362686543 hasAuthorship W4362686543A5043987877 @default.
- W4362686543 hasAuthorship W4362686543A5068343216 @default.
- W4362686543 hasConcept C108583219 @default.
- W4362686543 hasConcept C121332964 @default.
- W4362686543 hasConcept C127313418 @default.
- W4362686543 hasConcept C13280743 @default.
- W4362686543 hasConcept C154945302 @default.
- W4362686543 hasConcept C185798385 @default.
- W4362686543 hasConcept C2984842247 @default.
- W4362686543 hasConcept C41008148 @default.
- W4362686543 hasConcept C50644808 @default.
- W4362686543 hasConcept C56529433 @default.
- W4362686543 hasConcept C62520636 @default.
- W4362686543 hasConceptScore W4362686543C108583219 @default.
- W4362686543 hasConceptScore W4362686543C121332964 @default.
- W4362686543 hasConceptScore W4362686543C127313418 @default.
- W4362686543 hasConceptScore W4362686543C13280743 @default.
- W4362686543 hasConceptScore W4362686543C154945302 @default.
- W4362686543 hasConceptScore W4362686543C185798385 @default.
- W4362686543 hasConceptScore W4362686543C2984842247 @default.
- W4362686543 hasConceptScore W4362686543C41008148 @default.
- W4362686543 hasConceptScore W4362686543C50644808 @default.
- W4362686543 hasConceptScore W4362686543C56529433 @default.
- W4362686543 hasConceptScore W4362686543C62520636 @default.
- W4362686543 hasLocation W43626865431 @default.
- W4362686543 hasOpenAccess W4362686543 @default.
- W4362686543 hasPrimaryLocation W43626865431 @default.
- W4362686543 hasRelatedWork W2620920084 @default.
- W4362686543 hasRelatedWork W2950066684 @default.
- W4362686543 hasRelatedWork W3124304076 @default.
- W4362686543 hasRelatedWork W3139644427 @default.
- W4362686543 hasRelatedWork W4298388782 @default.
- W4362686543 hasRelatedWork W4299822940 @default.
- W4362686543 hasRelatedWork W4310034804 @default.
- W4362686543 hasRelatedWork W4323049313 @default.
- W4362686543 hasRelatedWork W4362496596 @default.
- W4362686543 hasRelatedWork W1829305295 @default.
- W4362686543 isParatext "false" @default.
- W4362686543 isRetracted "false" @default.
- W4362686543 workType "book-chapter" @default.