Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362693485> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4362693485 abstract "Next generation X-ray computed tomography, based on photon-counting detectors, is now clinically available. These new detectors come with the promise of higher contrast-to-noise ratio and spatial resolution and improved low-dose imaging. However, the multi-bin nature of photon-counting detectors renders the image reconstruction problem more difficult. Common approaches, such as the two-step projection-based approach, may result in material basis images with an excessive degree of noise, which limits the clinical usefulness of the images. One possible solution is to “assist” the conventional image reconstruction by post-processing the reconstructed images using deep learning. Such networks are often trained using some pixel-wise loss, such as the mean squared error. This low-level per-pixel comparison is known to lead to over-smoothing and a loss of fine-grained details that are important to the perceptual quality and clinical usefulness of the image. In this abstract, we propose to tackle this issue by including an adversarial loss based on the Wasserstein generative adversarial network with gradient penalty. The adversarial loss will encourage the distribution of the processed images to be similar to that of the ground truth. This helps prevent over-smoothing and ensures that the ground truth texture is well preserved. In particular, we train a version of the UNet using a combination of the mean absolute error and an adversarial loss to correct for noise in the material basis images. We demonstrate that the proposed method can produce denoised virtual monoenergetic images, with realistic texture, at a range of energy levels." @default.
- W4362693485 created "2023-04-09" @default.
- W4362693485 creator A5052538564 @default.
- W4362693485 creator A5076023815 @default.
- W4362693485 date "2023-04-07" @default.
- W4362693485 modified "2023-10-14" @default.
- W4362693485 title "Spectral CT denoising using a conditional Wasserstein generative adversarial network" @default.
- W4362693485 doi "https://doi.org/10.1117/12.2654186" @default.
- W4362693485 hasPublicationYear "2023" @default.
- W4362693485 type Work @default.
- W4362693485 citedByCount "0" @default.
- W4362693485 crossrefType "proceedings-article" @default.
- W4362693485 hasAuthorship W4362693485A5052538564 @default.
- W4362693485 hasAuthorship W4362693485A5076023815 @default.
- W4362693485 hasConcept C106430172 @default.
- W4362693485 hasConcept C11413529 @default.
- W4362693485 hasConcept C115961682 @default.
- W4362693485 hasConcept C141379421 @default.
- W4362693485 hasConcept C146849305 @default.
- W4362693485 hasConcept C153180895 @default.
- W4362693485 hasConcept C154945302 @default.
- W4362693485 hasConcept C160633673 @default.
- W4362693485 hasConcept C163294075 @default.
- W4362693485 hasConcept C31972630 @default.
- W4362693485 hasConcept C3770464 @default.
- W4362693485 hasConcept C41008148 @default.
- W4362693485 hasConcept C57493831 @default.
- W4362693485 hasConcept C9417928 @default.
- W4362693485 hasConcept C99498987 @default.
- W4362693485 hasConceptScore W4362693485C106430172 @default.
- W4362693485 hasConceptScore W4362693485C11413529 @default.
- W4362693485 hasConceptScore W4362693485C115961682 @default.
- W4362693485 hasConceptScore W4362693485C141379421 @default.
- W4362693485 hasConceptScore W4362693485C146849305 @default.
- W4362693485 hasConceptScore W4362693485C153180895 @default.
- W4362693485 hasConceptScore W4362693485C154945302 @default.
- W4362693485 hasConceptScore W4362693485C160633673 @default.
- W4362693485 hasConceptScore W4362693485C163294075 @default.
- W4362693485 hasConceptScore W4362693485C31972630 @default.
- W4362693485 hasConceptScore W4362693485C3770464 @default.
- W4362693485 hasConceptScore W4362693485C41008148 @default.
- W4362693485 hasConceptScore W4362693485C57493831 @default.
- W4362693485 hasConceptScore W4362693485C9417928 @default.
- W4362693485 hasConceptScore W4362693485C99498987 @default.
- W4362693485 hasLocation W43626934851 @default.
- W4362693485 hasOpenAccess W4362693485 @default.
- W4362693485 hasPrimaryLocation W43626934851 @default.
- W4362693485 hasRelatedWork W2002009170 @default.
- W4362693485 hasRelatedWork W2017731637 @default.
- W4362693485 hasRelatedWork W2080860377 @default.
- W4362693485 hasRelatedWork W2130228941 @default.
- W4362693485 hasRelatedWork W2132132164 @default.
- W4362693485 hasRelatedWork W2152301642 @default.
- W4362693485 hasRelatedWork W2383903979 @default.
- W4362693485 hasRelatedWork W3044651058 @default.
- W4362693485 hasRelatedWork W3050375926 @default.
- W4362693485 hasRelatedWork W3093404388 @default.
- W4362693485 isParatext "false" @default.
- W4362693485 isRetracted "false" @default.
- W4362693485 workType "article" @default.