Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362697342> ?p ?o ?g. }
- W4362697342 abstract "This work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently of each other. The proposed methodology capitalizes on a fast and accurate data-driven surrogate model developed for object characterization in terms of its vertical and lateral position, and the size. The surrogate is constructed in a computationally efficient manner as compared to methodologies using 2D B-scan image. This is achieved by operating at the level of hyperbolic signatures extracted from the B-scan data through linear regression, which effectively reduces the dimensionality and the size of data. The proposed methodology relies on reducing of 2D B-scan image to 1D data including variation of reflected electric fields' amplitudes with respect to the scanning aperture. The input of the surrogate model is the extracted hyperbolic signature obtained through linear regression executed on the background subtracted B-scan profiles. The hyperbolic signatures encode information about the geophysical parameters of the buried object, including depth, lateral position, and radius, all of which can be extracted using proposed methodology. Parametric estimation of the object radius and the estimation of the location parameters simultaneously is a challenging problem. Applying the application of processing steps on B-scan profiles incurs high computational costs, which is a limitation of the current methodologies. The metamodel itself is rendered using a novel deep-learning-based modified multilayer perceptron (M2LP) framework. The presented object characterization technique is favourably benchmarked against the state-of-the-art regression techniques, including Multilayer Perceptron (MLP), Support Vector Regression Machine (SVRM), and Convolutional Neural Network (CNN). The verification results demonstrate the average mean absolute error of 10 mm, and the average relative error of 8 percent, both corroborating the relevance of the proposed M2LP framework. In addition, the presented methodology provides a well-structured relation between the geophysical parameters of object and the extracted hyperbolic signatures. For the sake of supplementary verification under realistic scenarios, it is also applied for scenarios involving noisy data. The environmental and internal noise of the GPR system and their effect is analyzed as well. Furthermore, the proposed surrogate modeling approach is validated using measurement data, which is indicative of suitability of the approach to handle physical measurements as data sources." @default.
- W4362697342 created "2023-04-09" @default.
- W4362697342 creator A5014143730 @default.
- W4362697342 creator A5023550580 @default.
- W4362697342 creator A5048110175 @default.
- W4362697342 creator A5053926367 @default.
- W4362697342 creator A5057612518 @default.
- W4362697342 creator A5090628203 @default.
- W4362697342 date "2023-04-07" @default.
- W4362697342 modified "2023-10-17" @default.
- W4362697342 title "Buried object characterization by data-driven surrogates and regression-enabled hyperbolic signature extraction" @default.
- W4362697342 cites W145994489 @default.
- W4362697342 cites W1660164267 @default.
- W4362697342 cites W1965910527 @default.
- W4362697342 cites W1999738916 @default.
- W4362697342 cites W2053341576 @default.
- W4362697342 cites W2138489340 @default.
- W4362697342 cites W2151786856 @default.
- W4362697342 cites W2518909974 @default.
- W4362697342 cites W2521901407 @default.
- W4362697342 cites W2568283272 @default.
- W4362697342 cites W2586701271 @default.
- W4362697342 cites W2587865668 @default.
- W4362697342 cites W2601075041 @default.
- W4362697342 cites W2755510494 @default.
- W4362697342 cites W2790361856 @default.
- W4362697342 cites W2801494682 @default.
- W4362697342 cites W2906615456 @default.
- W4362697342 cites W2914917628 @default.
- W4362697342 cites W2940302004 @default.
- W4362697342 cites W2947163752 @default.
- W4362697342 cites W2955333808 @default.
- W4362697342 cites W2960304025 @default.
- W4362697342 cites W2972915404 @default.
- W4362697342 cites W2994263570 @default.
- W4362697342 cites W2996192756 @default.
- W4362697342 cites W3012140695 @default.
- W4362697342 cites W3012524131 @default.
- W4362697342 cites W3013741472 @default.
- W4362697342 cites W3014608870 @default.
- W4362697342 cites W3030068901 @default.
- W4362697342 cites W3034147267 @default.
- W4362697342 cites W3040794362 @default.
- W4362697342 cites W3046751903 @default.
- W4362697342 cites W3096057776 @default.
- W4362697342 cites W3102503485 @default.
- W4362697342 cites W3119221807 @default.
- W4362697342 cites W3134010413 @default.
- W4362697342 cites W3185315065 @default.
- W4362697342 cites W4206174753 @default.
- W4362697342 cites W4220672120 @default.
- W4362697342 cites W4234558931 @default.
- W4362697342 cites W4303980769 @default.
- W4362697342 cites W4319302991 @default.
- W4362697342 cites W4362697342 @default.
- W4362697342 doi "https://doi.org/10.1038/s41598-023-32925-6" @default.
- W4362697342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37029217" @default.
- W4362697342 hasPublicationYear "2023" @default.
- W4362697342 type Work @default.
- W4362697342 citedByCount "3" @default.
- W4362697342 countsByYear W43626973422023 @default.
- W4362697342 crossrefType "journal-article" @default.
- W4362697342 hasAuthorship W4362697342A5014143730 @default.
- W4362697342 hasAuthorship W4362697342A5023550580 @default.
- W4362697342 hasAuthorship W4362697342A5048110175 @default.
- W4362697342 hasAuthorship W4362697342A5053926367 @default.
- W4362697342 hasAuthorship W4362697342A5057612518 @default.
- W4362697342 hasAuthorship W4362697342A5090628203 @default.
- W4362697342 hasBestOaLocation W43626973421 @default.
- W4362697342 hasConcept C10138342 @default.
- W4362697342 hasConcept C105795698 @default.
- W4362697342 hasConcept C111030470 @default.
- W4362697342 hasConcept C11413529 @default.
- W4362697342 hasConcept C117251300 @default.
- W4362697342 hasConcept C153180895 @default.
- W4362697342 hasConcept C154945302 @default.
- W4362697342 hasConcept C162324750 @default.
- W4362697342 hasConcept C198082294 @default.
- W4362697342 hasConcept C31972630 @default.
- W4362697342 hasConcept C33923547 @default.
- W4362697342 hasConcept C41008148 @default.
- W4362697342 hasConcept C554190296 @default.
- W4362697342 hasConcept C71813955 @default.
- W4362697342 hasConcept C76155785 @default.
- W4362697342 hasConcept C87360688 @default.
- W4362697342 hasConceptScore W4362697342C10138342 @default.
- W4362697342 hasConceptScore W4362697342C105795698 @default.
- W4362697342 hasConceptScore W4362697342C111030470 @default.
- W4362697342 hasConceptScore W4362697342C11413529 @default.
- W4362697342 hasConceptScore W4362697342C117251300 @default.
- W4362697342 hasConceptScore W4362697342C153180895 @default.
- W4362697342 hasConceptScore W4362697342C154945302 @default.
- W4362697342 hasConceptScore W4362697342C162324750 @default.
- W4362697342 hasConceptScore W4362697342C198082294 @default.
- W4362697342 hasConceptScore W4362697342C31972630 @default.
- W4362697342 hasConceptScore W4362697342C33923547 @default.
- W4362697342 hasConceptScore W4362697342C41008148 @default.
- W4362697342 hasConceptScore W4362697342C554190296 @default.
- W4362697342 hasConceptScore W4362697342C71813955 @default.
- W4362697342 hasConceptScore W4362697342C76155785 @default.