Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362714708> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4362714708 endingPage "9" @default.
- W4362714708 startingPage "1" @default.
- W4362714708 abstract "Exploring historical measurement data-driven health monitoring schemes for roller bearings is a current research hotspot. In engineering practice, the type of fault data obtained is often unknown and requires expensive costs to be annotated. However, most current intelligent diagnostic methods are based on the assumption that the labeled fault data is sufficient, so as to effectively establish the nonlinear mapping relationship between monitoring signals and health status. For this issue, a newly intelligent diagnosis method based on semi-supervised matrixized graph embedding machine (SMGEM) is proposed. In SMGEM, the geometric similarity relationship of unlabeled and labeled samples is obtained, which is subsequently embedded by incorporating a manifold regularization into SMGEM model, so that SMGEM can use the structure information of unlabeled samples to assist modeling. Meanwhile, a weighted nuclear norm (WNN) is used to highlight the importance of large singular values, so that a more accurate weight matrix can be constructed. The proposed method is verified by several roller bearing fault datasets, and experimental results demonstrate that the proposed semi-supervised diagnosis method can use few labeled samples to obtain a better identification accuracy." @default.
- W4362714708 created "2023-04-09" @default.
- W4362714708 creator A5034294313 @default.
- W4362714708 creator A5044361588 @default.
- W4362714708 creator A5054600909 @default.
- W4362714708 creator A5064754125 @default.
- W4362714708 creator A5079131792 @default.
- W4362714708 date "2023-01-01" @default.
- W4362714708 modified "2023-09-24" @default.
- W4362714708 title "A Semi-supervised Matrixized Graph Embedding Machine for Roller Bearing Fault Diagnosis Under Few-labeled Samples" @default.
- W4362714708 doi "https://doi.org/10.1109/tii.2023.3265525" @default.
- W4362714708 hasPublicationYear "2023" @default.
- W4362714708 type Work @default.
- W4362714708 citedByCount "0" @default.
- W4362714708 crossrefType "journal-article" @default.
- W4362714708 hasAuthorship W4362714708A5034294313 @default.
- W4362714708 hasAuthorship W4362714708A5044361588 @default.
- W4362714708 hasAuthorship W4362714708A5054600909 @default.
- W4362714708 hasAuthorship W4362714708A5064754125 @default.
- W4362714708 hasAuthorship W4362714708A5079131792 @default.
- W4362714708 hasConcept C119599485 @default.
- W4362714708 hasConcept C119857082 @default.
- W4362714708 hasConcept C121332964 @default.
- W4362714708 hasConcept C12267149 @default.
- W4362714708 hasConcept C124101348 @default.
- W4362714708 hasConcept C127413603 @default.
- W4362714708 hasConcept C129364497 @default.
- W4362714708 hasConcept C132525143 @default.
- W4362714708 hasConcept C151876577 @default.
- W4362714708 hasConcept C152745839 @default.
- W4362714708 hasConcept C153180895 @default.
- W4362714708 hasConcept C154945302 @default.
- W4362714708 hasConcept C158622935 @default.
- W4362714708 hasConcept C172707124 @default.
- W4362714708 hasConcept C2775846686 @default.
- W4362714708 hasConcept C2776135515 @default.
- W4362714708 hasConcept C41008148 @default.
- W4362714708 hasConcept C41608201 @default.
- W4362714708 hasConcept C62520636 @default.
- W4362714708 hasConcept C70518039 @default.
- W4362714708 hasConcept C80444323 @default.
- W4362714708 hasConceptScore W4362714708C119599485 @default.
- W4362714708 hasConceptScore W4362714708C119857082 @default.
- W4362714708 hasConceptScore W4362714708C121332964 @default.
- W4362714708 hasConceptScore W4362714708C12267149 @default.
- W4362714708 hasConceptScore W4362714708C124101348 @default.
- W4362714708 hasConceptScore W4362714708C127413603 @default.
- W4362714708 hasConceptScore W4362714708C129364497 @default.
- W4362714708 hasConceptScore W4362714708C132525143 @default.
- W4362714708 hasConceptScore W4362714708C151876577 @default.
- W4362714708 hasConceptScore W4362714708C152745839 @default.
- W4362714708 hasConceptScore W4362714708C153180895 @default.
- W4362714708 hasConceptScore W4362714708C154945302 @default.
- W4362714708 hasConceptScore W4362714708C158622935 @default.
- W4362714708 hasConceptScore W4362714708C172707124 @default.
- W4362714708 hasConceptScore W4362714708C2775846686 @default.
- W4362714708 hasConceptScore W4362714708C2776135515 @default.
- W4362714708 hasConceptScore W4362714708C41008148 @default.
- W4362714708 hasConceptScore W4362714708C41608201 @default.
- W4362714708 hasConceptScore W4362714708C62520636 @default.
- W4362714708 hasConceptScore W4362714708C70518039 @default.
- W4362714708 hasConceptScore W4362714708C80444323 @default.
- W4362714708 hasFunder F4320321001 @default.
- W4362714708 hasFunder F4320335406 @default.
- W4362714708 hasLocation W43627147081 @default.
- W4362714708 hasOpenAccess W4362714708 @default.
- W4362714708 hasPrimaryLocation W43627147081 @default.
- W4362714708 hasRelatedWork W2041399278 @default.
- W4362714708 hasRelatedWork W2099369243 @default.
- W4362714708 hasRelatedWork W2120008580 @default.
- W4362714708 hasRelatedWork W2136184105 @default.
- W4362714708 hasRelatedWork W3172474704 @default.
- W4362714708 hasRelatedWork W3194539120 @default.
- W4362714708 hasRelatedWork W4205958290 @default.
- W4362714708 hasRelatedWork W4223656335 @default.
- W4362714708 hasRelatedWork W2187500075 @default.
- W4362714708 hasRelatedWork W2345184372 @default.
- W4362714708 isParatext "false" @default.
- W4362714708 isRetracted "false" @default.
- W4362714708 workType "article" @default.