Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362717718> ?p ?o ?g. }
- W4362717718 abstract "Abstract Granular Computing is a powerful information processing paradigm, particularly useful for the synthesis of pattern recognition systems in structured domains (e.g., graphs or sequences). According to this paradigm, granules of information play the pivotal role of describing the underlying (possibly complex) process, starting from the available data. Under a pattern recognition viewpoint, granules of information can be exploited for the synthesis of semantically sound embedding spaces, where common supervised or unsupervised problems can be solved via standard machine learning algorithms. In this companion paper, we follow our previous paper (Martino et al. in Algorithms 15(5):148, 2022) in the context of comparing different strategies for the automatic synthesis of information granules in the context of graph classification. These strategies mainly differ on the specific topology adopted for subgraphs considered as candidate information granules and the possibility of using or neglecting the ground-truth class labels in the granulation process and, conversely, to our previous work, we employ a filtering-based approach for the synthesis of information granules instead of a clustering-based one. Computational results on 6 open-access data sets corroborate the robustness of our filtering-based approach with respect to data stratification, if compared to a clustering-based granulation stage." @default.
- W4362717718 created "2023-04-09" @default.
- W4362717718 creator A5020616232 @default.
- W4362717718 creator A5025282612 @default.
- W4362717718 creator A5073847581 @default.
- W4362717718 date "2023-04-08" @default.
- W4362717718 modified "2023-10-01" @default.
- W4362717718 title "On Information Granulation via Data Filtering for Granular Computing-Based Pattern Recognition: A Graph Embedding Case Study" @default.
- W4362717718 cites W1081706099 @default.
- W4362717718 cites W1492230849 @default.
- W4362717718 cites W1567111208 @default.
- W4362717718 cites W1583023751 @default.
- W4362717718 cites W1595159159 @default.
- W4362717718 cites W1727182467 @default.
- W4362717718 cites W1970871468 @default.
- W4362717718 cites W1983681808 @default.
- W4362717718 cites W2002096154 @default.
- W4362717718 cites W2007240678 @default.
- W4362717718 cites W2008857988 @default.
- W4362717718 cites W2010541316 @default.
- W4362717718 cites W2013568176 @default.
- W4362717718 cites W2017844419 @default.
- W4362717718 cites W2038384345 @default.
- W4362717718 cites W2045293735 @default.
- W4362717718 cites W2056562706 @default.
- W4362717718 cites W2058413069 @default.
- W4362717718 cites W2059822086 @default.
- W4362717718 cites W2085029196 @default.
- W4362717718 cites W2111563706 @default.
- W4362717718 cites W2114832876 @default.
- W4362717718 cites W2116007667 @default.
- W4362717718 cites W2122111042 @default.
- W4362717718 cites W2136647665 @default.
- W4362717718 cites W2140288353 @default.
- W4362717718 cites W2153676086 @default.
- W4362717718 cites W2165094119 @default.
- W4362717718 cites W2170607286 @default.
- W4362717718 cites W2232548815 @default.
- W4362717718 cites W2331687785 @default.
- W4362717718 cites W2340494682 @default.
- W4362717718 cites W2411187089 @default.
- W4362717718 cites W2539989325 @default.
- W4362717718 cites W2786666498 @default.
- W4362717718 cites W2787894218 @default.
- W4362717718 cites W2800629944 @default.
- W4362717718 cites W2963066159 @default.
- W4362717718 cites W2977791469 @default.
- W4362717718 cites W2981765957 @default.
- W4362717718 cites W2995390015 @default.
- W4362717718 cites W3089941542 @default.
- W4362717718 cites W3091571146 @default.
- W4362717718 cites W3093061098 @default.
- W4362717718 cites W3094607559 @default.
- W4362717718 cites W3103145119 @default.
- W4362717718 cites W3125464319 @default.
- W4362717718 cites W3178436480 @default.
- W4362717718 cites W3184300732 @default.
- W4362717718 cites W3211194832 @default.
- W4362717718 cites W4232225751 @default.
- W4362717718 cites W4249601105 @default.
- W4362717718 cites W4255833381 @default.
- W4362717718 cites W4287689466 @default.
- W4362717718 cites W4294560071 @default.
- W4362717718 cites W4300958603 @default.
- W4362717718 cites W81602814 @default.
- W4362717718 cites W83672071 @default.
- W4362717718 cites W90286923 @default.
- W4362717718 doi "https://doi.org/10.1007/s42979-023-01716-1" @default.
- W4362717718 hasPublicationYear "2023" @default.
- W4362717718 type Work @default.
- W4362717718 citedByCount "0" @default.
- W4362717718 crossrefType "journal-article" @default.
- W4362717718 hasAuthorship W4362717718A5020616232 @default.
- W4362717718 hasAuthorship W4362717718A5025282612 @default.
- W4362717718 hasAuthorship W4362717718A5073847581 @default.
- W4362717718 hasBestOaLocation W43627177181 @default.
- W4362717718 hasConcept C104317684 @default.
- W4362717718 hasConcept C111012933 @default.
- W4362717718 hasConcept C119857082 @default.
- W4362717718 hasConcept C121332964 @default.
- W4362717718 hasConcept C124101348 @default.
- W4362717718 hasConcept C132525143 @default.
- W4362717718 hasConcept C146849305 @default.
- W4362717718 hasConcept C153180895 @default.
- W4362717718 hasConcept C154945302 @default.
- W4362717718 hasConcept C17209119 @default.
- W4362717718 hasConcept C185592680 @default.
- W4362717718 hasConcept C41008148 @default.
- W4362717718 hasConcept C41608201 @default.
- W4362717718 hasConcept C55493867 @default.
- W4362717718 hasConcept C63479239 @default.
- W4362717718 hasConcept C73555534 @default.
- W4362717718 hasConcept C74650414 @default.
- W4362717718 hasConcept C80444323 @default.
- W4362717718 hasConcept C88463166 @default.
- W4362717718 hasConceptScore W4362717718C104317684 @default.
- W4362717718 hasConceptScore W4362717718C111012933 @default.
- W4362717718 hasConceptScore W4362717718C119857082 @default.
- W4362717718 hasConceptScore W4362717718C121332964 @default.
- W4362717718 hasConceptScore W4362717718C124101348 @default.