Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362722458> ?p ?o ?g. }
- W4362722458 endingPage "129040" @default.
- W4362722458 startingPage "129040" @default.
- W4362722458 abstract "This work aims to develop a prediction model for the contents of oxygenated components in bio-oil based on machine learning according to different pyrolysis conditions and biomass characteristics. The prediction model was constructed using the extreme gradient boosting (XGB) method, and the prediction accuracy was evaluated using the test dataset. The partial dependence analysis (PDA) method was used to derive the pattern of influence of each input feature individually or in combination on the output variable. The results show that the prediction models constructed from biomass ultimate analysis and pyrolysis conditions can predict the contents of oxygenated components in bio-oil more accurately than the models constructed from biomass proximate analysis. Moderate C and O contents, higher H content of biomass, lower flow rate, and higher pyrolysis temperature can improve bio-oil quality." @default.
- W4362722458 created "2023-04-09" @default.
- W4362722458 creator A5018892762 @default.
- W4362722458 creator A5030482940 @default.
- W4362722458 date "2023-07-01" @default.
- W4362722458 modified "2023-10-12" @default.
- W4362722458 title "Machine learning prediction of contents of oxygenated components in bio-oil using extreme gradient boosting method under different pyrolysis conditions" @default.
- W4362722458 cites W1984106016 @default.
- W4362722458 cites W1995156399 @default.
- W4362722458 cites W2022254260 @default.
- W4362722458 cites W2070534223 @default.
- W4362722458 cites W2115743836 @default.
- W4362722458 cites W2178640296 @default.
- W4362722458 cites W2204702920 @default.
- W4362722458 cites W2299678286 @default.
- W4362722458 cites W2314618307 @default.
- W4362722458 cites W2350554061 @default.
- W4362722458 cites W2592662457 @default.
- W4362722458 cites W2605986812 @default.
- W4362722458 cites W2805727081 @default.
- W4362722458 cites W2910024157 @default.
- W4362722458 cites W2917440571 @default.
- W4362722458 cites W2943719375 @default.
- W4362722458 cites W2957883309 @default.
- W4362722458 cites W2984679637 @default.
- W4362722458 cites W3010160967 @default.
- W4362722458 cites W3033938356 @default.
- W4362722458 cites W3043435488 @default.
- W4362722458 cites W3048716975 @default.
- W4362722458 cites W3081331445 @default.
- W4362722458 cites W3088267631 @default.
- W4362722458 cites W3089531788 @default.
- W4362722458 cites W3092573545 @default.
- W4362722458 cites W3102476541 @default.
- W4362722458 cites W3111960500 @default.
- W4362722458 cites W3182792458 @default.
- W4362722458 cites W3185661073 @default.
- W4362722458 cites W3195141004 @default.
- W4362722458 cites W3212165602 @default.
- W4362722458 cites W4200051822 @default.
- W4362722458 cites W4210799069 @default.
- W4362722458 cites W4224881964 @default.
- W4362722458 cites W4281491153 @default.
- W4362722458 cites W4296668464 @default.
- W4362722458 cites W4303437404 @default.
- W4362722458 cites W4307210890 @default.
- W4362722458 cites W781750846 @default.
- W4362722458 doi "https://doi.org/10.1016/j.biortech.2023.129040" @default.
- W4362722458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37037334" @default.
- W4362722458 hasPublicationYear "2023" @default.
- W4362722458 type Work @default.
- W4362722458 citedByCount "0" @default.
- W4362722458 crossrefType "journal-article" @default.
- W4362722458 hasAuthorship W4362722458A5018892762 @default.
- W4362722458 hasAuthorship W4362722458A5030482940 @default.
- W4362722458 hasConcept C115540264 @default.
- W4362722458 hasConcept C119857082 @default.
- W4362722458 hasConcept C127413603 @default.
- W4362722458 hasConcept C154945302 @default.
- W4362722458 hasConcept C156380964 @default.
- W4362722458 hasConcept C169258074 @default.
- W4362722458 hasConcept C186060115 @default.
- W4362722458 hasConcept C18903297 @default.
- W4362722458 hasConcept C21880701 @default.
- W4362722458 hasConcept C2780536370 @default.
- W4362722458 hasConcept C33923547 @default.
- W4362722458 hasConcept C36759035 @default.
- W4362722458 hasConcept C39432304 @default.
- W4362722458 hasConcept C41008148 @default.
- W4362722458 hasConcept C45804977 @default.
- W4362722458 hasConcept C46686674 @default.
- W4362722458 hasConcept C528095902 @default.
- W4362722458 hasConcept C53991642 @default.
- W4362722458 hasConcept C548081761 @default.
- W4362722458 hasConcept C70153297 @default.
- W4362722458 hasConcept C86803240 @default.
- W4362722458 hasConceptScore W4362722458C115540264 @default.
- W4362722458 hasConceptScore W4362722458C119857082 @default.
- W4362722458 hasConceptScore W4362722458C127413603 @default.
- W4362722458 hasConceptScore W4362722458C154945302 @default.
- W4362722458 hasConceptScore W4362722458C156380964 @default.
- W4362722458 hasConceptScore W4362722458C169258074 @default.
- W4362722458 hasConceptScore W4362722458C186060115 @default.
- W4362722458 hasConceptScore W4362722458C18903297 @default.
- W4362722458 hasConceptScore W4362722458C21880701 @default.
- W4362722458 hasConceptScore W4362722458C2780536370 @default.
- W4362722458 hasConceptScore W4362722458C33923547 @default.
- W4362722458 hasConceptScore W4362722458C36759035 @default.
- W4362722458 hasConceptScore W4362722458C39432304 @default.
- W4362722458 hasConceptScore W4362722458C41008148 @default.
- W4362722458 hasConceptScore W4362722458C45804977 @default.
- W4362722458 hasConceptScore W4362722458C46686674 @default.
- W4362722458 hasConceptScore W4362722458C528095902 @default.
- W4362722458 hasConceptScore W4362722458C53991642 @default.
- W4362722458 hasConceptScore W4362722458C548081761 @default.
- W4362722458 hasConceptScore W4362722458C70153297 @default.
- W4362722458 hasConceptScore W4362722458C86803240 @default.
- W4362722458 hasFunder F4320321001 @default.