Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362723557> ?p ?o ?g. }
- W4362723557 endingPage "107" @default.
- W4362723557 startingPage "90" @default.
- W4362723557 abstract "Nuclear magnetic resonance (NMR) measurements of water diffusion have been extensively used to probe microstructure in porous materials, such as biological tissue, however primarily using pulsed gradient spin echo (PGSE) methods. Low-field single-sided NMR systems have built-in static gradients (SG) much stronger than typical PGSE maximum gradient strengths, which allows for the signal attenuation at extremely high b-values to be explored. Here, we perform SG spin echo (SGSE) and SG stimulated echo (SGSTE) diffusion measurements on biological cells, tissues, and gels. Measurements on fixed and live neonatal mouse spinal cord, lobster ventral nerve cord, and starved yeast cells all show multiexponential signal attenuation on a scale of b with significant signal fractions observed at b × D0 ≫ 1 with b as high as 400 ms/μm2. These persistent signal fractions trend with surface-to-volume ratios for these systems, as expected from porous media theory. An exception found for the case of fixed vs. live spinal cords was attributed to faster exchange or permeability in live spinal cords than in fixed spinal cords on the millisecond timescale. Data suggests the existence of multiple exchange processes in neural tissue, which may be relevant to the modeling of time-dependent diffusion in gray matter. The observed multi-exponential attenuation is from protons on water and not macromolecules because it remains proportional to the normalized signal when a specimen is washed with D2O. The signal that persists to b × D0 ≫ 1 is also drastically reduced after delipidation, indicating that it originates from lipid membranes that restrict water diffusion. The multi-exponential or stretched exponential character of the signal attenuation at b × D0 ≫ 1 appears mono-exponential when viewed on a scale of (b×D0)1/3, suggesting it may originate from localization or motional averaging of water near membranes on sub-micron length scales. To try to disambiguate these two contributions, signal attenuation curves were compared at varying temperatures. While the curves align when normalizing them using the localization length scale, they separate on a motional averaging length scale. This supports localization as the source of non-Gaussian displacements, but this interpretation is still provisional due to the possible confounds of heterogeneity, exchange, and relaxation. Measurements on two types of gel phantoms designed to mimic extracellular matrix, one with charged functional groups synthesized from polyacrylic acid (PAC) and another with uncharged functional groups synthesized from polyacrylamide (PAM), both exhibit signal at b × D0 ≫ 1, potentially due to water interacting with macromolecules. These preliminary finding motivate future research into contrast and attenuation mechanisms in tissue with low-field, high-gradient NMR." @default.
- W4362723557 created "2023-04-10" @default.
- W4362723557 creator A5020127992 @default.
- W4362723557 creator A5030308644 @default.
- W4362723557 creator A5038994213 @default.
- W4362723557 creator A5073373676 @default.
- W4362723557 creator A5082822170 @default.
- W4362723557 creator A5090497719 @default.
- W4362723557 date "2023-05-01" @default.
- W4362723557 modified "2023-09-25" @default.
- W4362723557 title "Low-field, high-gradient NMR shows diffusion contrast consistent with localization or motional averaging of water near surfaces" @default.
- W4362723557 cites W1229055518 @default.
- W4362723557 cites W1829170282 @default.
- W4362723557 cites W1967994403 @default.
- W4362723557 cites W1975017507 @default.
- W4362723557 cites W1976043016 @default.
- W4362723557 cites W1977838764 @default.
- W4362723557 cites W1981596913 @default.
- W4362723557 cites W1986269278 @default.
- W4362723557 cites W1987263024 @default.
- W4362723557 cites W1991251902 @default.
- W4362723557 cites W1998340829 @default.
- W4362723557 cites W2001992126 @default.
- W4362723557 cites W2002177759 @default.
- W4362723557 cites W2011038175 @default.
- W4362723557 cites W2017100621 @default.
- W4362723557 cites W2019821666 @default.
- W4362723557 cites W2023173554 @default.
- W4362723557 cites W2025249109 @default.
- W4362723557 cites W2025794242 @default.
- W4362723557 cites W2027803689 @default.
- W4362723557 cites W2029601420 @default.
- W4362723557 cites W2035199633 @default.
- W4362723557 cites W2040196970 @default.
- W4362723557 cites W2040227569 @default.
- W4362723557 cites W2045814615 @default.
- W4362723557 cites W2046498575 @default.
- W4362723557 cites W2049685486 @default.
- W4362723557 cites W2054555463 @default.
- W4362723557 cites W2060416909 @default.
- W4362723557 cites W2067028551 @default.
- W4362723557 cites W2069564285 @default.
- W4362723557 cites W2074341090 @default.
- W4362723557 cites W2076283593 @default.
- W4362723557 cites W2078379813 @default.
- W4362723557 cites W2078772327 @default.
- W4362723557 cites W2081966747 @default.
- W4362723557 cites W2082182286 @default.
- W4362723557 cites W2084761689 @default.
- W4362723557 cites W2102917770 @default.
- W4362723557 cites W2106495485 @default.
- W4362723557 cites W2111271983 @default.
- W4362723557 cites W2111698175 @default.
- W4362723557 cites W2122073968 @default.
- W4362723557 cites W2129996649 @default.
- W4362723557 cites W2139165339 @default.
- W4362723557 cites W2343105074 @default.
- W4362723557 cites W2499023944 @default.
- W4362723557 cites W2569786193 @default.
- W4362723557 cites W2585382012 @default.
- W4362723557 cites W2594281642 @default.
- W4362723557 cites W2606556535 @default.
- W4362723557 cites W2794499767 @default.
- W4362723557 cites W2888981364 @default.
- W4362723557 cites W2897413527 @default.
- W4362723557 cites W2912619306 @default.
- W4362723557 cites W2914422207 @default.
- W4362723557 cites W2919262810 @default.
- W4362723557 cites W2941409477 @default.
- W4362723557 cites W2953704469 @default.
- W4362723557 cites W2999192030 @default.
- W4362723557 cites W2999619964 @default.
- W4362723557 cites W3002055189 @default.
- W4362723557 cites W3005723313 @default.
- W4362723557 cites W3015618497 @default.
- W4362723557 cites W3035880565 @default.
- W4362723557 cites W3041404528 @default.
- W4362723557 cites W3043321626 @default.
- W4362723557 cites W3044547968 @default.
- W4362723557 cites W3044942096 @default.
- W4362723557 cites W3087136714 @default.
- W4362723557 cites W3186974972 @default.
- W4362723557 cites W3193827989 @default.
- W4362723557 cites W3195383010 @default.
- W4362723557 cites W4205511762 @default.
- W4362723557 cites W4229606193 @default.
- W4362723557 cites W4254297188 @default.
- W4362723557 cites W4281296874 @default.
- W4362723557 cites W4292103739 @default.
- W4362723557 cites W4294970226 @default.
- W4362723557 cites W4309511603 @default.
- W4362723557 cites W4322491318 @default.
- W4362723557 cites W652778864 @default.
- W4362723557 doi "https://doi.org/10.1016/j.mrl.2023.03.009" @default.
- W4362723557 hasPublicationYear "2023" @default.
- W4362723557 type Work @default.
- W4362723557 citedByCount "1" @default.
- W4362723557 countsByYear W43627235572023 @default.