Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362736758> ?p ?o ?g. }
- W4362736758 endingPage "108500" @default.
- W4362736758 startingPage "108500" @default.
- W4362736758 abstract "One or both surfaces, which come in contact with a relative motion between them, can experience material loss due to wear. This is a complex phenomenon involving several parameters consisting of both the material and experimental conditions. It is thus very much difficult to predict the volume loss under a specific condition as a consequence of wear. In this study, an effort was given to develop a machine learning approach involving several parameters such as composition, microstructure, hardness, load, sliding distance, temperature etc to quantify and predict the material loss. The outcomes obtained from the model were found to be logical with existing knowledge. The model predictions were validated with experimental results not used to build up the model." @default.
- W4362736758 created "2023-04-11" @default.
- W4362736758 creator A5019701280 @default.
- W4362736758 creator A5031842344 @default.
- W4362736758 date "2023-07-01" @default.
- W4362736758 modified "2023-09-24" @default.
- W4362736758 title "A machine learning approach to predict the wear behaviour of steels" @default.
- W4362736758 cites W1155839111 @default.
- W4362736758 cites W1505861716 @default.
- W4362736758 cites W1971395914 @default.
- W4362736758 cites W1975350612 @default.
- W4362736758 cites W1977602316 @default.
- W4362736758 cites W1980306016 @default.
- W4362736758 cites W1985899015 @default.
- W4362736758 cites W1986775884 @default.
- W4362736758 cites W1990351237 @default.
- W4362736758 cites W1991097166 @default.
- W4362736758 cites W1997272476 @default.
- W4362736758 cites W1998055383 @default.
- W4362736758 cites W2000585864 @default.
- W4362736758 cites W2001356644 @default.
- W4362736758 cites W2002546155 @default.
- W4362736758 cites W2004699397 @default.
- W4362736758 cites W2009150634 @default.
- W4362736758 cites W2011635636 @default.
- W4362736758 cites W2014544591 @default.
- W4362736758 cites W2015374515 @default.
- W4362736758 cites W2015449320 @default.
- W4362736758 cites W2019561942 @default.
- W4362736758 cites W2023645891 @default.
- W4362736758 cites W2024046065 @default.
- W4362736758 cites W2024739625 @default.
- W4362736758 cites W2025772659 @default.
- W4362736758 cites W2040346184 @default.
- W4362736758 cites W2041738088 @default.
- W4362736758 cites W2043283680 @default.
- W4362736758 cites W2045110217 @default.
- W4362736758 cites W2051491856 @default.
- W4362736758 cites W2051740851 @default.
- W4362736758 cites W2053002574 @default.
- W4362736758 cites W2071515465 @default.
- W4362736758 cites W2071968071 @default.
- W4362736758 cites W2084715298 @default.
- W4362736758 cites W2084940123 @default.
- W4362736758 cites W2088538739 @default.
- W4362736758 cites W2089919255 @default.
- W4362736758 cites W2093926590 @default.
- W4362736758 cites W2095003175 @default.
- W4362736758 cites W2101866918 @default.
- W4362736758 cites W2105192472 @default.
- W4362736758 cites W2111051539 @default.
- W4362736758 cites W2262812381 @default.
- W4362736758 cites W2290430135 @default.
- W4362736758 cites W2346257250 @default.
- W4362736758 cites W2794436500 @default.
- W4362736758 cites W2897536970 @default.
- W4362736758 cites W2899741581 @default.
- W4362736758 cites W2919146003 @default.
- W4362736758 cites W2921933183 @default.
- W4362736758 cites W3015519383 @default.
- W4362736758 cites W3028444534 @default.
- W4362736758 cites W3093937543 @default.
- W4362736758 cites W3130868075 @default.
- W4362736758 cites W3161320337 @default.
- W4362736758 cites W4233358047 @default.
- W4362736758 cites W632511877 @default.
- W4362736758 doi "https://doi.org/10.1016/j.triboint.2023.108500" @default.
- W4362736758 hasPublicationYear "2023" @default.
- W4362736758 type Work @default.
- W4362736758 citedByCount "2" @default.
- W4362736758 countsByYear W43627367582023 @default.
- W4362736758 crossrefType "journal-article" @default.
- W4362736758 hasAuthorship W4362736758A5019701280 @default.
- W4362736758 hasAuthorship W4362736758A5031842344 @default.
- W4362736758 hasConcept C119857082 @default.
- W4362736758 hasConcept C121332964 @default.
- W4362736758 hasConcept C127413603 @default.
- W4362736758 hasConcept C191897082 @default.
- W4362736758 hasConcept C192562407 @default.
- W4362736758 hasConcept C2988640725 @default.
- W4362736758 hasConcept C41008148 @default.
- W4362736758 hasConcept C57879066 @default.
- W4362736758 hasConcept C78519656 @default.
- W4362736758 hasConcept C87976508 @default.
- W4362736758 hasConceptScore W4362736758C119857082 @default.
- W4362736758 hasConceptScore W4362736758C121332964 @default.
- W4362736758 hasConceptScore W4362736758C127413603 @default.
- W4362736758 hasConceptScore W4362736758C191897082 @default.
- W4362736758 hasConceptScore W4362736758C192562407 @default.
- W4362736758 hasConceptScore W4362736758C2988640725 @default.
- W4362736758 hasConceptScore W4362736758C41008148 @default.
- W4362736758 hasConceptScore W4362736758C57879066 @default.
- W4362736758 hasConceptScore W4362736758C78519656 @default.
- W4362736758 hasConceptScore W4362736758C87976508 @default.
- W4362736758 hasFunder F4320322724 @default.
- W4362736758 hasLocation W43627367581 @default.
- W4362736758 hasOpenAccess W4362736758 @default.
- W4362736758 hasPrimaryLocation W43627367581 @default.