Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363621000> ?p ?o ?g. }
- W4363621000 abstract "Breast cancer risk is increased by dense breast tissue. The existing mammographic density classification methods cannot provide sufficient classification accuracy. The classification of breast density is still a challenging issue. In this paper, we propose an ensemble method for improving the accuracy of mammographic breast density classification. The ensemble method uses two views of screening mammography and employs state-of-the-art deep learning-based methods such as Swin Transformer and ConvNeXts model as base learners for local decisions and soft voting to predict the final decision. The method has been thoroughly evaluated on the benchmark DDSM dataset; it achieved an accuracy of 97.61%, a sensitivity of 95.11%, and a specificity of 98.32%. The comparison shows that the method significantly outperforms the state-of-the-art methods for breast density classification. This study provides insight into the application of deep learning to classify breast density." @default.
- W4363621000 created "2023-04-11" @default.
- W4363621000 creator A5017982651 @default.
- W4363621000 creator A5027010923 @default.
- W4363621000 creator A5034511041 @default.
- W4363621000 creator A5036227039 @default.
- W4363621000 creator A5062755714 @default.
- W4363621000 date "2022-10-01" @default.
- W4363621000 modified "2023-10-01" @default.
- W4363621000 title "Mammogram Screening for Breast Density Classification using a soft voting ensemble of Swin Transformers and ConvNext models" @default.
- W4363621000 cites W1979773093 @default.
- W4363621000 cites W2580480204 @default.
- W4363621000 cites W2770114997 @default.
- W4363621000 cites W2897490102 @default.
- W4363621000 cites W2918886649 @default.
- W4363621000 cites W2944016032 @default.
- W4363621000 cites W2946794439 @default.
- W4363621000 cites W2951024126 @default.
- W4363621000 cites W2963163009 @default.
- W4363621000 cites W2964348594 @default.
- W4363621000 cites W3004452670 @default.
- W4363621000 cites W3082625794 @default.
- W4363621000 cites W3127426043 @default.
- W4363621000 cites W3138516171 @default.
- W4363621000 cites W3172942063 @default.
- W4363621000 cites W3174882160 @default.
- W4363621000 cites W3177920269 @default.
- W4363621000 cites W3188016109 @default.
- W4363621000 cites W3193520650 @default.
- W4363621000 cites W3202236840 @default.
- W4363621000 cites W3203841574 @default.
- W4363621000 cites W41027960 @default.
- W4363621000 cites W4205682476 @default.
- W4363621000 cites W4211117539 @default.
- W4363621000 cites W4285495722 @default.
- W4363621000 cites W4286437542 @default.
- W4363621000 cites W4288066463 @default.
- W4363621000 cites W4312443924 @default.
- W4363621000 doi "https://doi.org/10.1109/sitis57111.2022.00063" @default.
- W4363621000 hasPublicationYear "2022" @default.
- W4363621000 type Work @default.
- W4363621000 citedByCount "0" @default.
- W4363621000 crossrefType "proceedings-article" @default.
- W4363621000 hasAuthorship W4363621000A5017982651 @default.
- W4363621000 hasAuthorship W4363621000A5027010923 @default.
- W4363621000 hasAuthorship W4363621000A5034511041 @default.
- W4363621000 hasAuthorship W4363621000A5036227039 @default.
- W4363621000 hasAuthorship W4363621000A5062755714 @default.
- W4363621000 hasConcept C119599485 @default.
- W4363621000 hasConcept C119857082 @default.
- W4363621000 hasConcept C121608353 @default.
- W4363621000 hasConcept C126322002 @default.
- W4363621000 hasConcept C127413603 @default.
- W4363621000 hasConcept C13280743 @default.
- W4363621000 hasConcept C153180895 @default.
- W4363621000 hasConcept C154945302 @default.
- W4363621000 hasConcept C165801399 @default.
- W4363621000 hasConcept C17744445 @default.
- W4363621000 hasConcept C185798385 @default.
- W4363621000 hasConcept C199539241 @default.
- W4363621000 hasConcept C205649164 @default.
- W4363621000 hasConcept C2780472235 @default.
- W4363621000 hasConcept C3018951153 @default.
- W4363621000 hasConcept C3020109028 @default.
- W4363621000 hasConcept C41008148 @default.
- W4363621000 hasConcept C45942800 @default.
- W4363621000 hasConcept C520049643 @default.
- W4363621000 hasConcept C530470458 @default.
- W4363621000 hasConcept C66322947 @default.
- W4363621000 hasConcept C71924100 @default.
- W4363621000 hasConcept C94625758 @default.
- W4363621000 hasConceptScore W4363621000C119599485 @default.
- W4363621000 hasConceptScore W4363621000C119857082 @default.
- W4363621000 hasConceptScore W4363621000C121608353 @default.
- W4363621000 hasConceptScore W4363621000C126322002 @default.
- W4363621000 hasConceptScore W4363621000C127413603 @default.
- W4363621000 hasConceptScore W4363621000C13280743 @default.
- W4363621000 hasConceptScore W4363621000C153180895 @default.
- W4363621000 hasConceptScore W4363621000C154945302 @default.
- W4363621000 hasConceptScore W4363621000C165801399 @default.
- W4363621000 hasConceptScore W4363621000C17744445 @default.
- W4363621000 hasConceptScore W4363621000C185798385 @default.
- W4363621000 hasConceptScore W4363621000C199539241 @default.
- W4363621000 hasConceptScore W4363621000C205649164 @default.
- W4363621000 hasConceptScore W4363621000C2780472235 @default.
- W4363621000 hasConceptScore W4363621000C3018951153 @default.
- W4363621000 hasConceptScore W4363621000C3020109028 @default.
- W4363621000 hasConceptScore W4363621000C41008148 @default.
- W4363621000 hasConceptScore W4363621000C45942800 @default.
- W4363621000 hasConceptScore W4363621000C520049643 @default.
- W4363621000 hasConceptScore W4363621000C530470458 @default.
- W4363621000 hasConceptScore W4363621000C66322947 @default.
- W4363621000 hasConceptScore W4363621000C71924100 @default.
- W4363621000 hasConceptScore W4363621000C94625758 @default.
- W4363621000 hasFunder F4320322997 @default.
- W4363621000 hasLocation W43636210001 @default.
- W4363621000 hasOpenAccess W4363621000 @default.
- W4363621000 hasPrimaryLocation W43636210001 @default.
- W4363621000 hasRelatedWork W2058114743 @default.
- W4363621000 hasRelatedWork W2088153095 @default.