Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363648237> ?p ?o ?g. }
- W4363648237 endingPage "3805" @default.
- W4363648237 startingPage "3805" @default.
- W4363648237 abstract "Although many authors have observed a degradation in greening cover alongside an increase in the built-up areas, resulting in a deterioration of the essential environmental services for the well-being of ecosystems and society, few studies have measured how greening developed in its full spatiotemporal configuration with urban development using innovative remote sensing (RS) technologies. Focusing on this issue, the authors propose an innovative methodology for the analysis of the urban and greening changes over time by integrating deep learning (DL) technologies to classify and segment the built-up area and the vegetation cover from satellite and aerial images and geographic information system (GIS) techniques. The core of the methodology is a trained and validated U-Net model, which was tested on an urban area in the municipality of Matera (Italy), analyzing the urban and greening changes from 2000 to 2020. The results demonstrate a very good level of accuracy of the U-Net model, a remarkable increment in the built-up area density (8.28%) and a decline in the vegetation cover density (5.13%). The obtained results demonstrate how the proposed method can be used to rapidly and accurately identify useful information about urban and greening spatiotemporal development using innovative RS technologies supporting sustainable development processes." @default.
- W4363648237 created "2023-04-11" @default.
- W4363648237 creator A5060637809 @default.
- W4363648237 creator A5077588871 @default.
- W4363648237 creator A5083194196 @default.
- W4363648237 date "2023-04-07" @default.
- W4363648237 modified "2023-10-16" @default.
- W4363648237 title "Combining Deep Learning and Multi-Source GIS Methods to Analyze Urban and Greening Changes" @default.
- W4363648237 cites W1178327149 @default.
- W4363648237 cites W162971534 @default.
- W4363648237 cites W1901129140 @default.
- W4363648237 cites W1969585803 @default.
- W4363648237 cites W2003482806 @default.
- W4363648237 cites W2006526475 @default.
- W4363648237 cites W2009464254 @default.
- W4363648237 cites W2055773279 @default.
- W4363648237 cites W2086613190 @default.
- W4363648237 cites W2100563011 @default.
- W4363648237 cites W2117248785 @default.
- W4363648237 cites W2157231547 @default.
- W4363648237 cites W2253590344 @default.
- W4363648237 cites W2290107234 @default.
- W4363648237 cites W2515244244 @default.
- W4363648237 cites W2613889578 @default.
- W4363648237 cites W2615881101 @default.
- W4363648237 cites W2620760558 @default.
- W4363648237 cites W2648242067 @default.
- W4363648237 cites W2764259642 @default.
- W4363648237 cites W2786960507 @default.
- W4363648237 cites W2793927960 @default.
- W4363648237 cites W2798390049 @default.
- W4363648237 cites W2882995622 @default.
- W4363648237 cites W2886191360 @default.
- W4363648237 cites W2889102127 @default.
- W4363648237 cites W2897656581 @default.
- W4363648237 cites W2897856113 @default.
- W4363648237 cites W2912361013 @default.
- W4363648237 cites W2914272072 @default.
- W4363648237 cites W2915731581 @default.
- W4363648237 cites W2940726923 @default.
- W4363648237 cites W2945715875 @default.
- W4363648237 cites W2963881378 @default.
- W4363648237 cites W2964194231 @default.
- W4363648237 cites W2966450079 @default.
- W4363648237 cites W2973660294 @default.
- W4363648237 cites W2996836954 @default.
- W4363648237 cites W3014372673 @default.
- W4363648237 cites W3031891882 @default.
- W4363648237 cites W3034254144 @default.
- W4363648237 cites W3037987183 @default.
- W4363648237 cites W3132455321 @default.
- W4363648237 cites W3133955926 @default.
- W4363648237 cites W3139014401 @default.
- W4363648237 cites W3158309666 @default.
- W4363648237 cites W3175740668 @default.
- W4363648237 cites W3200484751 @default.
- W4363648237 cites W3204793181 @default.
- W4363648237 cites W3207755536 @default.
- W4363648237 cites W4210788561 @default.
- W4363648237 cites W4210941357 @default.
- W4363648237 cites W4214652434 @default.
- W4363648237 cites W4248710273 @default.
- W4363648237 cites W4293714852 @default.
- W4363648237 doi "https://doi.org/10.3390/s23083805" @default.
- W4363648237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37112145" @default.
- W4363648237 hasPublicationYear "2023" @default.
- W4363648237 type Work @default.
- W4363648237 citedByCount "2" @default.
- W4363648237 countsByYear W43636482372023 @default.
- W4363648237 crossrefType "journal-article" @default.
- W4363648237 hasAuthorship W4363648237A5060637809 @default.
- W4363648237 hasAuthorship W4363648237A5077588871 @default.
- W4363648237 hasAuthorship W4363648237A5083194196 @default.
- W4363648237 hasBestOaLocation W43636482371 @default.
- W4363648237 hasConcept C107826830 @default.
- W4363648237 hasConcept C127413603 @default.
- W4363648237 hasConcept C142724271 @default.
- W4363648237 hasConcept C147176958 @default.
- W4363648237 hasConcept C18903297 @default.
- W4363648237 hasConcept C205649164 @default.
- W4363648237 hasConcept C20664614 @default.
- W4363648237 hasConcept C2776133958 @default.
- W4363648237 hasConcept C2778354632 @default.
- W4363648237 hasConcept C2780428219 @default.
- W4363648237 hasConcept C39432304 @default.
- W4363648237 hasConcept C41008148 @default.
- W4363648237 hasConcept C41856607 @default.
- W4363648237 hasConcept C49545453 @default.
- W4363648237 hasConcept C552854447 @default.
- W4363648237 hasConcept C62649853 @default.
- W4363648237 hasConcept C71924100 @default.
- W4363648237 hasConcept C78519656 @default.
- W4363648237 hasConcept C86803240 @default.
- W4363648237 hasConceptScore W4363648237C107826830 @default.
- W4363648237 hasConceptScore W4363648237C127413603 @default.
- W4363648237 hasConceptScore W4363648237C142724271 @default.
- W4363648237 hasConceptScore W4363648237C147176958 @default.
- W4363648237 hasConceptScore W4363648237C18903297 @default.