Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363649849> ?p ?o ?g. }
- W4363649849 endingPage "103547" @default.
- W4363649849 startingPage "103547" @default.
- W4363649849 abstract "Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect identification. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the laser-material interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for in-situ defect detection in LDED process." @default.
- W4363649849 created "2023-04-11" @default.
- W4363649849 creator A5003261759 @default.
- W4363649849 creator A5003462447 @default.
- W4363649849 creator A5021778628 @default.
- W4363649849 creator A5040856642 @default.
- W4363649849 creator A5041417150 @default.
- W4363649849 creator A5042535267 @default.
- W4363649849 creator A5046696201 @default.
- W4363649849 creator A5082988770 @default.
- W4363649849 creator A5089328574 @default.
- W4363649849 date "2023-05-01" @default.
- W4363649849 modified "2023-10-16" @default.
- W4363649849 title "In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning" @default.
- W4363649849 cites W1598253959 @default.
- W4363649849 cites W2020997493 @default.
- W4363649849 cites W2064948657 @default.
- W4363649849 cites W2084052726 @default.
- W4363649849 cites W2088984019 @default.
- W4363649849 cites W2114168752 @default.
- W4363649849 cites W2125324924 @default.
- W4363649849 cites W2128838222 @default.
- W4363649849 cites W2133824856 @default.
- W4363649849 cites W2144205901 @default.
- W4363649849 cites W2145487065 @default.
- W4363649849 cites W2146096861 @default.
- W4363649849 cites W2169559282 @default.
- W4363649849 cites W2191779130 @default.
- W4363649849 cites W2346272251 @default.
- W4363649849 cites W2508326151 @default.
- W4363649849 cites W2606155622 @default.
- W4363649849 cites W2732304117 @default.
- W4363649849 cites W2734525966 @default.
- W4363649849 cites W2801343304 @default.
- W4363649849 cites W2909096226 @default.
- W4363649849 cites W2946068285 @default.
- W4363649849 cites W2967833934 @default.
- W4363649849 cites W2976594877 @default.
- W4363649849 cites W2979798188 @default.
- W4363649849 cites W3011016137 @default.
- W4363649849 cites W3033747567 @default.
- W4363649849 cites W3036188520 @default.
- W4363649849 cites W3036433441 @default.
- W4363649849 cites W3087496116 @default.
- W4363649849 cites W3098547112 @default.
- W4363649849 cites W3107590942 @default.
- W4363649849 cites W3112812051 @default.
- W4363649849 cites W3130247865 @default.
- W4363649849 cites W3146983589 @default.
- W4363649849 cites W3163610583 @default.
- W4363649849 cites W3167891248 @default.
- W4363649849 cites W3188652225 @default.
- W4363649849 cites W3204186848 @default.
- W4363649849 cites W4205680792 @default.
- W4363649849 cites W4213351422 @default.
- W4363649849 cites W4214817820 @default.
- W4363649849 cites W4214872519 @default.
- W4363649849 cites W4229756885 @default.
- W4363649849 cites W4235760779 @default.
- W4363649849 cites W4290785274 @default.
- W4363649849 cites W4294577375 @default.
- W4363649849 cites W4295300842 @default.
- W4363649849 cites W4295994902 @default.
- W4363649849 cites W4297991835 @default.
- W4363649849 cites W4304693993 @default.
- W4363649849 cites W4307570290 @default.
- W4363649849 cites W4312198824 @default.
- W4363649849 doi "https://doi.org/10.1016/j.addma.2023.103547" @default.
- W4363649849 hasPublicationYear "2023" @default.
- W4363649849 type Work @default.
- W4363649849 citedByCount "2" @default.
- W4363649849 countsByYear W43636498492023 @default.
- W4363649849 crossrefType "journal-article" @default.
- W4363649849 hasAuthorship W4363649849A5003261759 @default.
- W4363649849 hasAuthorship W4363649849A5003462447 @default.
- W4363649849 hasAuthorship W4363649849A5021778628 @default.
- W4363649849 hasAuthorship W4363649849A5040856642 @default.
- W4363649849 hasAuthorship W4363649849A5041417150 @default.
- W4363649849 hasAuthorship W4363649849A5042535267 @default.
- W4363649849 hasAuthorship W4363649849A5046696201 @default.
- W4363649849 hasAuthorship W4363649849A5082988770 @default.
- W4363649849 hasAuthorship W4363649849A5089328574 @default.
- W4363649849 hasBestOaLocation W43636498492 @default.
- W4363649849 hasConcept C103824480 @default.
- W4363649849 hasConcept C108583219 @default.
- W4363649849 hasConcept C121332964 @default.
- W4363649849 hasConcept C138885662 @default.
- W4363649849 hasConcept C153180895 @default.
- W4363649849 hasConcept C154945302 @default.
- W4363649849 hasConcept C191897082 @default.
- W4363649849 hasConcept C192562407 @default.
- W4363649849 hasConcept C19474535 @default.
- W4363649849 hasConcept C199360897 @default.
- W4363649849 hasConcept C24890656 @default.
- W4363649849 hasConcept C2776139624 @default.
- W4363649849 hasConcept C2776401178 @default.
- W4363649849 hasConcept C2779843651 @default.
- W4363649849 hasConcept C31972630 @default.