Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363676089> ?p ?o ?g. }
- W4363676089 abstract "Abstract Based on the interrelationship between the built environment and spatial–temporal distribution of population density, this paper proposes a method to predict the spatial–temporal distribution of urban population density using the depth residual network model (ResNet) of neural network. This study used the time-sharing data of mobile phone users provided by the China Mobile Communications Corporation to predict the time–space sequence of the steady-state distribution of population density. Firstly, 40 prediction databases were constructed according to the characteristics of built environment and the spatial–temporal distribution of population density. Thereafter, the depth residual model ResNet was used as the basic framework to construct the behaviour–environment agent model (BEM) for model training and prediction. Finally, the average percentage error index was used to evaluate the prediction results. The results revealed that the accuracy rate of prediction results reached 76.92% in the central urban area of the verification case. The proposed method can be applied to prevent urban public safety incidents and alleviate pandemics. Moreover, this method can be practically applied to enable the construction of a “smart city” for improving the efficient allocation of urban resources and traffic mobility." @default.
- W4363676089 created "2023-04-11" @default.
- W4363676089 creator A5034704847 @default.
- W4363676089 creator A5045138262 @default.
- W4363676089 creator A5045941184 @default.
- W4363676089 creator A5064334128 @default.
- W4363676089 date "2023-04-10" @default.
- W4363676089 modified "2023-09-25" @default.
- W4363676089 title "The spatiotemporal prediction method of urban population density distribution through behaviour environment interaction agent model" @default.
- W4363676089 cites W1963905090 @default.
- W4363676089 cites W1974823450 @default.
- W4363676089 cites W1982300822 @default.
- W4363676089 cites W1987228002 @default.
- W4363676089 cites W1994682066 @default.
- W4363676089 cites W2044980902 @default.
- W4363676089 cites W2074991364 @default.
- W4363676089 cites W2075433852 @default.
- W4363676089 cites W2099638684 @default.
- W4363676089 cites W2134946452 @default.
- W4363676089 cites W2517491419 @default.
- W4363676089 cites W2528639018 @default.
- W4363676089 cites W2557523848 @default.
- W4363676089 cites W2585762973 @default.
- W4363676089 cites W2768444160 @default.
- W4363676089 cites W2769918300 @default.
- W4363676089 cites W2789788750 @default.
- W4363676089 cites W2792803029 @default.
- W4363676089 cites W2801732248 @default.
- W4363676089 cites W2802126623 @default.
- W4363676089 cites W2805980970 @default.
- W4363676089 cites W2850576248 @default.
- W4363676089 cites W2884912765 @default.
- W4363676089 cites W2896775444 @default.
- W4363676089 cites W2911663851 @default.
- W4363676089 cites W2918005232 @default.
- W4363676089 cites W2929569684 @default.
- W4363676089 cites W2930928994 @default.
- W4363676089 cites W2963000270 @default.
- W4363676089 cites W2968900629 @default.
- W4363676089 cites W2970090621 @default.
- W4363676089 cites W2990162095 @default.
- W4363676089 cites W2995009030 @default.
- W4363676089 cites W3000025556 @default.
- W4363676089 cites W3000301417 @default.
- W4363676089 cites W3008021512 @default.
- W4363676089 cites W3010317925 @default.
- W4363676089 cites W3011225402 @default.
- W4363676089 cites W3013594674 @default.
- W4363676089 cites W3043995842 @default.
- W4363676089 cites W3046358311 @default.
- W4363676089 cites W3081599431 @default.
- W4363676089 cites W3098208509 @default.
- W4363676089 cites W3102282118 @default.
- W4363676089 cites W3119705424 @default.
- W4363676089 cites W3124426233 @default.
- W4363676089 cites W3127107039 @default.
- W4363676089 cites W3127438474 @default.
- W4363676089 cites W3149307016 @default.
- W4363676089 cites W3156394643 @default.
- W4363676089 cites W3158353711 @default.
- W4363676089 cites W3162885128 @default.
- W4363676089 cites W3184491461 @default.
- W4363676089 cites W3213237406 @default.
- W4363676089 cites W3214685769 @default.
- W4363676089 cites W3217016897 @default.
- W4363676089 cites W4200184227 @default.
- W4363676089 cites W4205336278 @default.
- W4363676089 cites W4206019081 @default.
- W4363676089 cites W4210820789 @default.
- W4363676089 cites W4211047002 @default.
- W4363676089 cites W4223422807 @default.
- W4363676089 cites W4224232634 @default.
- W4363676089 cites W4282599641 @default.
- W4363676089 doi "https://doi.org/10.1038/s41598-023-32529-0" @default.
- W4363676089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37037827" @default.
- W4363676089 hasPublicationYear "2023" @default.
- W4363676089 type Work @default.
- W4363676089 citedByCount "0" @default.
- W4363676089 crossrefType "journal-article" @default.
- W4363676089 hasAuthorship W4363676089A5034704847 @default.
- W4363676089 hasAuthorship W4363676089A5045138262 @default.
- W4363676089 hasAuthorship W4363676089A5045941184 @default.
- W4363676089 hasAuthorship W4363676089A5064334128 @default.
- W4363676089 hasBestOaLocation W43636760891 @default.
- W4363676089 hasConcept C11413529 @default.
- W4363676089 hasConcept C124101348 @default.
- W4363676089 hasConcept C144024400 @default.
- W4363676089 hasConcept C149923435 @default.
- W4363676089 hasConcept C154945302 @default.
- W4363676089 hasConcept C155512373 @default.
- W4363676089 hasConcept C2777421447 @default.
- W4363676089 hasConcept C2908647359 @default.
- W4363676089 hasConcept C41008148 @default.
- W4363676089 hasConcept C50644808 @default.
- W4363676089 hasConcept C76155785 @default.
- W4363676089 hasConceptScore W4363676089C11413529 @default.
- W4363676089 hasConceptScore W4363676089C124101348 @default.
- W4363676089 hasConceptScore W4363676089C144024400 @default.
- W4363676089 hasConceptScore W4363676089C149923435 @default.
- W4363676089 hasConceptScore W4363676089C154945302 @default.