Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363676506> ?p ?o ?g. }
- W4363676506 endingPage "216" @default.
- W4363676506 startingPage "183" @default.
- W4363676506 abstract "Analysis of neighborhood environments is important for understanding inequality. Few studies, however, use direct measures of the visible characteristics of neighborhood conditions, despite their theorized importance in shaping individual and community well-being, because collecting data on the physical conditions of places across neighborhoods and cities and over time has required extensive time and labor. The authors introduce systematic social observation at scale (SSO@S), a pipeline for using visual data, crowdsourcing, and computer vision to identify visible characteristics of neighborhoods at a large scale. The authors implement SSO@S on millions of street-level images across three physically distinct cities—Boston, Detroit, and Los Angeles—from 2007 to 2020 to identify trash across space and over time. The authors evaluate the extent to which this approach can be used to assist with systematic coding of street-level imagery through cross-validation and out-of-sample validation, class-activation mapping, and comparisons with other sources of observed neighborhood characteristics. The SSO@S approach produces estimates with high reliability that correlate with some expected demographic characteristics but not others, depending on the city. The authors conclude with an assessment of this approach for measuring visible characteristics of neighborhoods and the implications for methods and research." @default.
- W4363676506 created "2023-04-11" @default.
- W4363676506 creator A5080945007 @default.
- W4363676506 creator A5081479937 @default.
- W4363676506 date "2023-04-10" @default.
- W4363676506 modified "2023-09-25" @default.
- W4363676506 title "Systematic Social Observation at Scale: Using Crowdsourcing and Computer Vision to Measure Visible Neighborhood Conditions" @default.
- W4363676506 cites W1963110543 @default.
- W4363676506 cites W1968147892 @default.
- W4363676506 cites W1969284902 @default.
- W4363676506 cites W1979728958 @default.
- W4363676506 cites W1998489119 @default.
- W4363676506 cites W2021247340 @default.
- W4363676506 cites W2027808287 @default.
- W4363676506 cites W2028979196 @default.
- W4363676506 cites W2038777424 @default.
- W4363676506 cites W2055322511 @default.
- W4363676506 cites W2067745708 @default.
- W4363676506 cites W2078883237 @default.
- W4363676506 cites W2079757104 @default.
- W4363676506 cites W2082107925 @default.
- W4363676506 cites W2093317318 @default.
- W4363676506 cites W2098484201 @default.
- W4363676506 cites W2099822562 @default.
- W4363676506 cites W2100747086 @default.
- W4363676506 cites W2118915688 @default.
- W4363676506 cites W2123981812 @default.
- W4363676506 cites W2145278574 @default.
- W4363676506 cites W2146303811 @default.
- W4363676506 cites W2151546712 @default.
- W4363676506 cites W2153492338 @default.
- W4363676506 cites W2155243985 @default.
- W4363676506 cites W2157325805 @default.
- W4363676506 cites W2169815921 @default.
- W4363676506 cites W2170667052 @default.
- W4363676506 cites W2170742249 @default.
- W4363676506 cites W2173549862 @default.
- W4363676506 cites W2194775991 @default.
- W4363676506 cites W2220933288 @default.
- W4363676506 cites W2295107390 @default.
- W4363676506 cites W2323933343 @default.
- W4363676506 cites W2338318698 @default.
- W4363676506 cites W2503660362 @default.
- W4363676506 cites W2588172417 @default.
- W4363676506 cites W2588898775 @default.
- W4363676506 cites W2613230382 @default.
- W4363676506 cites W2727800986 @default.
- W4363676506 cites W2732873697 @default.
- W4363676506 cites W2747541393 @default.
- W4363676506 cites W2757771239 @default.
- W4363676506 cites W2762186317 @default.
- W4363676506 cites W2769252714 @default.
- W4363676506 cites W2770820547 @default.
- W4363676506 cites W2804212835 @default.
- W4363676506 cites W2893230532 @default.
- W4363676506 cites W2894272248 @default.
- W4363676506 cites W2899428780 @default.
- W4363676506 cites W2919115771 @default.
- W4363676506 cites W2921479043 @default.
- W4363676506 cites W2946322287 @default.
- W4363676506 cites W2977909652 @default.
- W4363676506 cites W3095351420 @default.
- W4363676506 cites W3111704911 @default.
- W4363676506 cites W3121257585 @default.
- W4363676506 cites W3143841729 @default.
- W4363676506 cites W3154847196 @default.
- W4363676506 cites W4211080771 @default.
- W4363676506 cites W4229573252 @default.
- W4363676506 cites W4252250696 @default.
- W4363676506 cites W4288101107 @default.
- W4363676506 cites W632139601 @default.
- W4363676506 doi "https://doi.org/10.1177/00811750231160781" @default.
- W4363676506 hasPublicationYear "2023" @default.
- W4363676506 type Work @default.
- W4363676506 citedByCount "1" @default.
- W4363676506 countsByYear W43636765062023 @default.
- W4363676506 crossrefType "journal-article" @default.
- W4363676506 hasAuthorship W4363676506A5080945007 @default.
- W4363676506 hasAuthorship W4363676506A5081479937 @default.
- W4363676506 hasConcept C124101348 @default.
- W4363676506 hasConcept C127413603 @default.
- W4363676506 hasConcept C136764020 @default.
- W4363676506 hasConcept C147176958 @default.
- W4363676506 hasConcept C148803439 @default.
- W4363676506 hasConcept C185592680 @default.
- W4363676506 hasConcept C198531522 @default.
- W4363676506 hasConcept C205649164 @default.
- W4363676506 hasConcept C2522767166 @default.
- W4363676506 hasConcept C2778755073 @default.
- W4363676506 hasConcept C2780009758 @default.
- W4363676506 hasConcept C2780814631 @default.
- W4363676506 hasConcept C41008148 @default.
- W4363676506 hasConcept C43617362 @default.
- W4363676506 hasConcept C58640448 @default.
- W4363676506 hasConcept C62230096 @default.
- W4363676506 hasConceptScore W4363676506C124101348 @default.
- W4363676506 hasConceptScore W4363676506C127413603 @default.
- W4363676506 hasConceptScore W4363676506C136764020 @default.