Matches in SemOpenAlex for { <https://semopenalex.org/work/W4363676989> ?p ?o ?g. }
- W4363676989 endingPage "129499" @default.
- W4363676989 startingPage "129499" @default.
- W4363676989 abstract "Rapid and accurate urban flood forecasting with high temporal resolution is critical to address future flood risks under urbanization and climate change. Machine learning models are increasingly used for flood forecasting, however, they are limited in their ability to extract effective features from rainfall data and capture dynamic runoff processes. This study proposes an attention mechanism-based Long Short-Term Memory (LSTM) network, named as ALSTM-DW, which uses double time sliding windows (DTSW), and a weighted mean square error (WMSE) loss function. The ALSTM-DW model was applied to three urban flooding hotspots in Shenzhen, China, and its effectiveness was verified through a series of comparative experiments. The results obtained show that: 1) the proposed model performs well, with a coefficient of determination larger than 0.85, peak flow error smaller than 0.015 m, and time to peak error smaller than 2 min on average in testing periods; 2) the use of DTSW helps extract effective rainfall features and mitigate excessive fluctuations in forecasted hydrographs caused by over-response to rainfall; 3) adding the attention mechanism to the LSTM network helps consider the varying contribution of each input factor over time; and 4) the WMSE improves the ability of the network to predict flood peaks, with an average decrease of 88% and 54% in peak flow error and time to peak error, respectively. Therefore, the ALSTM-DW model shows promising potential for providing accurate flood forecasting, which can support effective flood emergency operations." @default.
- W4363676989 created "2023-04-11" @default.
- W4363676989 creator A5021541475 @default.
- W4363676989 creator A5027888963 @default.
- W4363676989 creator A5034391635 @default.
- W4363676989 creator A5064741018 @default.
- W4363676989 creator A5073641312 @default.
- W4363676989 date "2023-05-01" @default.
- W4363676989 modified "2023-09-28" @default.
- W4363676989 title "High temporal resolution urban flood prediction using attention-based LSTM models" @default.
- W4363676989 cites W1973090862 @default.
- W4363676989 cites W1973359108 @default.
- W4363676989 cites W1973663667 @default.
- W4363676989 cites W2004796972 @default.
- W4363676989 cites W2037856229 @default.
- W4363676989 cites W2044192815 @default.
- W4363676989 cites W2064675550 @default.
- W4363676989 cites W2075053745 @default.
- W4363676989 cites W2087109254 @default.
- W4363676989 cites W2100953574 @default.
- W4363676989 cites W2114957697 @default.
- W4363676989 cites W2116639981 @default.
- W4363676989 cites W2123162799 @default.
- W4363676989 cites W2138435550 @default.
- W4363676989 cites W2164655924 @default.
- W4363676989 cites W2210359000 @default.
- W4363676989 cites W2593388048 @default.
- W4363676989 cites W2767240374 @default.
- W4363676989 cites W2771412470 @default.
- W4363676989 cites W2800819102 @default.
- W4363676989 cites W2898661956 @default.
- W4363676989 cites W2898791292 @default.
- W4363676989 cites W2900459298 @default.
- W4363676989 cites W2904231191 @default.
- W4363676989 cites W2939035037 @default.
- W4363676989 cites W2945377681 @default.
- W4363676989 cites W2947218679 @default.
- W4363676989 cites W2989857225 @default.
- W4363676989 cites W2999092792 @default.
- W4363676989 cites W3003917887 @default.
- W4363676989 cites W3021538729 @default.
- W4363676989 cites W3025162817 @default.
- W4363676989 cites W3026995154 @default.
- W4363676989 cites W3027953868 @default.
- W4363676989 cites W3036363354 @default.
- W4363676989 cites W3037111239 @default.
- W4363676989 cites W3047298021 @default.
- W4363676989 cites W3082171107 @default.
- W4363676989 cites W3083321172 @default.
- W4363676989 cites W3086498997 @default.
- W4363676989 cites W3099487920 @default.
- W4363676989 cites W3103865021 @default.
- W4363676989 cites W3113116348 @default.
- W4363676989 cites W3117506853 @default.
- W4363676989 cites W3127525113 @default.
- W4363676989 cites W3183978973 @default.
- W4363676989 cites W3190367846 @default.
- W4363676989 cites W3195461136 @default.
- W4363676989 cites W3196330507 @default.
- W4363676989 cites W4200201767 @default.
- W4363676989 cites W4200512102 @default.
- W4363676989 cites W4213272346 @default.
- W4363676989 cites W4214923410 @default.
- W4363676989 cites W4224984053 @default.
- W4363676989 cites W4225815937 @default.
- W4363676989 cites W4280579106 @default.
- W4363676989 cites W4293180257 @default.
- W4363676989 doi "https://doi.org/10.1016/j.jhydrol.2023.129499" @default.
- W4363676989 hasPublicationYear "2023" @default.
- W4363676989 type Work @default.
- W4363676989 citedByCount "1" @default.
- W4363676989 countsByYear W43636769892023 @default.
- W4363676989 crossrefType "journal-article" @default.
- W4363676989 hasAuthorship W4363676989A5021541475 @default.
- W4363676989 hasAuthorship W4363676989A5027888963 @default.
- W4363676989 hasAuthorship W4363676989A5034391635 @default.
- W4363676989 hasAuthorship W4363676989A5064741018 @default.
- W4363676989 hasAuthorship W4363676989A5073641312 @default.
- W4363676989 hasConcept C105795698 @default.
- W4363676989 hasConcept C139945424 @default.
- W4363676989 hasConcept C154936535 @default.
- W4363676989 hasConcept C15744967 @default.
- W4363676989 hasConcept C166957645 @default.
- W4363676989 hasConcept C183195422 @default.
- W4363676989 hasConcept C186594467 @default.
- W4363676989 hasConcept C18903297 @default.
- W4363676989 hasConcept C205649164 @default.
- W4363676989 hasConcept C33923547 @default.
- W4363676989 hasConcept C39432304 @default.
- W4363676989 hasConcept C41008148 @default.
- W4363676989 hasConcept C50477045 @default.
- W4363676989 hasConcept C542102704 @default.
- W4363676989 hasConcept C74256435 @default.
- W4363676989 hasConcept C86803240 @default.
- W4363676989 hasConceptScore W4363676989C105795698 @default.
- W4363676989 hasConceptScore W4363676989C139945424 @default.
- W4363676989 hasConceptScore W4363676989C154936535 @default.
- W4363676989 hasConceptScore W4363676989C15744967 @default.