Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364305280> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4364305280 abstract "The rapid growth in deep learning has accelerated advances in many areas of computer vision. However, deep learning-based approaches require a large amount of data to train models. Subsequently, synthetic data is increasingly being looked to as a source for labeled training datasets to be used with supervised deep learning algorithms. WAMI (wide-area motion imagery) is sequential, oblique imagery, typically taken from an aircraft or drone, at city scale. Collecting a WAMI dataset can represent a significant investment of resources and logistics. However, the availability of synthetic WAMI datasets could overcome these concerns as well as potentially add benefits such as having associated ground truth. Recently, Google released Earth Studio, a browser-based animation tool that uses a 3D rendering engine to generate WAMI-like datasets across the globe. When working with synthetic data, a key point of concern is whether the synthetic data is sufficiently realistic for the purpose at hand. In this paper, we generate rendered WAMI datasets using Google Earth Studio. The rendered datasets are of the same locations for which we also have real WAMI datasets, and we then analyze the WAMI dataset and the images rendered by Google Earth Studio based on 3D reconstruction and feature evaluation of the dataset to determine how feasible synthetic datasets are in comparison to non-synthetic ones." @default.
- W4364305280 created "2023-04-12" @default.
- W4364305280 creator A5025286899 @default.
- W4364305280 creator A5040828575 @default.
- W4364305280 creator A5041066881 @default.
- W4364305280 creator A5061509663 @default.
- W4364305280 creator A5062712205 @default.
- W4364305280 date "2022-10-11" @default.
- W4364305280 modified "2023-09-27" @default.
- W4364305280 title "A comparison of features Synthetic WAMI and GES of the same location" @default.
- W4364305280 cites W1491719799 @default.
- W4364305280 cites W1505641881 @default.
- W4364305280 cites W1532362218 @default.
- W4364305280 cites W1543512389 @default.
- W4364305280 cites W1677409904 @default.
- W4364305280 cites W1861492603 @default.
- W4364305280 cites W1901447884 @default.
- W4364305280 cites W1953691509 @default.
- W4364305280 cites W1955055330 @default.
- W4364305280 cites W1964339413 @default.
- W4364305280 cites W1982947349 @default.
- W4364305280 cites W2048710758 @default.
- W4364305280 cites W2054511520 @default.
- W4364305280 cites W2067036962 @default.
- W4364305280 cites W2084041505 @default.
- W4364305280 cites W2085905957 @default.
- W4364305280 cites W2094694151 @default.
- W4364305280 cites W2112634643 @default.
- W4364305280 cites W2117228865 @default.
- W4364305280 cites W2141584146 @default.
- W4364305280 cites W2148060992 @default.
- W4364305280 cites W2151103935 @default.
- W4364305280 cites W2471962767 @default.
- W4364305280 cites W2519683295 @default.
- W4364305280 cites W2594519801 @default.
- W4364305280 cites W2618743635 @default.
- W4364305280 cites W2737094507 @default.
- W4364305280 cites W2798971533 @default.
- W4364305280 cites W2802865601 @default.
- W4364305280 cites W2963760790 @default.
- W4364305280 cites W2966838560 @default.
- W4364305280 cites W2972406617 @default.
- W4364305280 cites W2974053236 @default.
- W4364305280 cites W2979093049 @default.
- W4364305280 cites W2990532164 @default.
- W4364305280 cites W3112339945 @default.
- W4364305280 cites W3163612967 @default.
- W4364305280 cites W4206760982 @default.
- W4364305280 doi "https://doi.org/10.1109/aipr57179.2022.10092236" @default.
- W4364305280 hasPublicationYear "2022" @default.
- W4364305280 type Work @default.
- W4364305280 citedByCount "0" @default.
- W4364305280 crossrefType "proceedings-article" @default.
- W4364305280 hasAuthorship W4364305280A5025286899 @default.
- W4364305280 hasAuthorship W4364305280A5040828575 @default.
- W4364305280 hasAuthorship W4364305280A5041066881 @default.
- W4364305280 hasAuthorship W4364305280A5061509663 @default.
- W4364305280 hasAuthorship W4364305280A5062712205 @default.
- W4364305280 hasConcept C108583219 @default.
- W4364305280 hasConcept C121684516 @default.
- W4364305280 hasConcept C154945302 @default.
- W4364305280 hasConcept C160920958 @default.
- W4364305280 hasConcept C205711294 @default.
- W4364305280 hasConcept C41008148 @default.
- W4364305280 hasConcept C45012715 @default.
- W4364305280 hasConcept C502989409 @default.
- W4364305280 hasConcept C76155785 @default.
- W4364305280 hasConceptScore W4364305280C108583219 @default.
- W4364305280 hasConceptScore W4364305280C121684516 @default.
- W4364305280 hasConceptScore W4364305280C154945302 @default.
- W4364305280 hasConceptScore W4364305280C160920958 @default.
- W4364305280 hasConceptScore W4364305280C205711294 @default.
- W4364305280 hasConceptScore W4364305280C41008148 @default.
- W4364305280 hasConceptScore W4364305280C45012715 @default.
- W4364305280 hasConceptScore W4364305280C502989409 @default.
- W4364305280 hasConceptScore W4364305280C76155785 @default.
- W4364305280 hasLocation W43643052801 @default.
- W4364305280 hasOpenAccess W4364305280 @default.
- W4364305280 hasPrimaryLocation W43643052801 @default.
- W4364305280 hasRelatedWork W2053872664 @default.
- W4364305280 hasRelatedWork W2291247677 @default.
- W4364305280 hasRelatedWork W2319960035 @default.
- W4364305280 hasRelatedWork W2383619367 @default.
- W4364305280 hasRelatedWork W2740707091 @default.
- W4364305280 hasRelatedWork W2766993077 @default.
- W4364305280 hasRelatedWork W4283017422 @default.
- W4364305280 hasRelatedWork W5033674 @default.
- W4364305280 hasRelatedWork W613224938 @default.
- W4364305280 hasRelatedWork W648297822 @default.
- W4364305280 isParatext "false" @default.
- W4364305280 isRetracted "false" @default.
- W4364305280 workType "article" @default.