Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364356857> ?p ?o ?g. }
- W4364356857 endingPage "118931" @default.
- W4364356857 startingPage "118931" @default.
- W4364356857 abstract "Recent works on providing proper sparse or low-rank priors have shown to result in good quality image restoration performance. The nonlocal self-similarity (NSS) of images indicates that groups stacked by similar patches not only have low-rank characteristic, but also have sparse characteristic. However, many of the existing methods for image modeling use one or the other of these characteristics, but not both, which may limit the performance of image denoising. We propose in this paper a novel model for image denoising, designated as the bilateral weighted sparse coding and low-rank (BWSCLR) model, which exploits simultaneously the low-rank property and the bilateral weighted sparse coding under the NSS prior to better restore the texture and the edges of images contaminated by noise. Furthermore, a block coordinate descent algorithm involving three steps is proposed to obtain the solution for our model. A number of experiments on denoising different image scenarios, including gray-scale and color images are carried out, and the results clearly show the superior performance of the proposed BWSCLR method over that of the state-of-the-art algorithms not only in terms of the quantitative metrics such as PSNR and SSIM, but also in perceptual quality." @default.
- W4364356857 created "2023-04-12" @default.
- W4364356857 creator A5013967994 @default.
- W4364356857 creator A5053115593 @default.
- W4364356857 creator A5063203947 @default.
- W4364356857 date "2023-08-01" @default.
- W4364356857 modified "2023-10-09" @default.
- W4364356857 title "Low-rank with sparsity constraints for image denoising" @default.
- W4364356857 cites W1906770428 @default.
- W4364356857 cites W1978749115 @default.
- W4364356857 cites W1997201895 @default.
- W4364356857 cites W2014311222 @default.
- W4364356857 cites W2017399967 @default.
- W4364356857 cites W2042984553 @default.
- W4364356857 cites W2045079989 @default.
- W4364356857 cites W2056370875 @default.
- W4364356857 cites W2067290341 @default.
- W4364356857 cites W2075157914 @default.
- W4364356857 cites W2083138589 @default.
- W4364356857 cites W2103972604 @default.
- W4364356857 cites W2111557737 @default.
- W4364356857 cites W2133665775 @default.
- W4364356857 cites W2142224912 @default.
- W4364356857 cites W2153663612 @default.
- W4364356857 cites W2160547390 @default.
- W4364356857 cites W2172275395 @default.
- W4364356857 cites W2184334976 @default.
- W4364356857 cites W2207282238 @default.
- W4364356857 cites W2219841864 @default.
- W4364356857 cites W2324298973 @default.
- W4364356857 cites W2505029951 @default.
- W4364356857 cites W2508457857 @default.
- W4364356857 cites W2613184245 @default.
- W4364356857 cites W2767380400 @default.
- W4364356857 cites W2800744053 @default.
- W4364356857 cites W2808453325 @default.
- W4364356857 cites W2899191282 @default.
- W4364356857 cites W2910259740 @default.
- W4364356857 cites W2916190813 @default.
- W4364356857 cites W2952161969 @default.
- W4364356857 cites W2963315679 @default.
- W4364356857 cites W2995679912 @default.
- W4364356857 cites W3012209675 @default.
- W4364356857 cites W3016633288 @default.
- W4364356857 cites W3083358456 @default.
- W4364356857 cites W3084306245 @default.
- W4364356857 cites W3099794995 @default.
- W4364356857 cites W3100203369 @default.
- W4364356857 cites W3104720471 @default.
- W4364356857 cites W3158362096 @default.
- W4364356857 cites W3161747711 @default.
- W4364356857 cites W4281926091 @default.
- W4364356857 cites W4285128412 @default.
- W4364356857 doi "https://doi.org/10.1016/j.ins.2023.04.010" @default.
- W4364356857 hasPublicationYear "2023" @default.
- W4364356857 type Work @default.
- W4364356857 citedByCount "2" @default.
- W4364356857 countsByYear W43643568572023 @default.
- W4364356857 crossrefType "journal-article" @default.
- W4364356857 hasAuthorship W4364356857A5013967994 @default.
- W4364356857 hasAuthorship W4364356857A5053115593 @default.
- W4364356857 hasAuthorship W4364356857A5063203947 @default.
- W4364356857 hasConcept C101453961 @default.
- W4364356857 hasConcept C107673813 @default.
- W4364356857 hasConcept C114614502 @default.
- W4364356857 hasConcept C115961682 @default.
- W4364356857 hasConcept C124066611 @default.
- W4364356857 hasConcept C153180895 @default.
- W4364356857 hasConcept C154945302 @default.
- W4364356857 hasConcept C163294075 @default.
- W4364356857 hasConcept C164226766 @default.
- W4364356857 hasConcept C177769412 @default.
- W4364356857 hasConcept C2983327147 @default.
- W4364356857 hasConcept C33923547 @default.
- W4364356857 hasConcept C41008148 @default.
- W4364356857 hasConcept C55020928 @default.
- W4364356857 hasConcept C77637269 @default.
- W4364356857 hasConceptScore W4364356857C101453961 @default.
- W4364356857 hasConceptScore W4364356857C107673813 @default.
- W4364356857 hasConceptScore W4364356857C114614502 @default.
- W4364356857 hasConceptScore W4364356857C115961682 @default.
- W4364356857 hasConceptScore W4364356857C124066611 @default.
- W4364356857 hasConceptScore W4364356857C153180895 @default.
- W4364356857 hasConceptScore W4364356857C154945302 @default.
- W4364356857 hasConceptScore W4364356857C163294075 @default.
- W4364356857 hasConceptScore W4364356857C164226766 @default.
- W4364356857 hasConceptScore W4364356857C177769412 @default.
- W4364356857 hasConceptScore W4364356857C2983327147 @default.
- W4364356857 hasConceptScore W4364356857C33923547 @default.
- W4364356857 hasConceptScore W4364356857C41008148 @default.
- W4364356857 hasConceptScore W4364356857C55020928 @default.
- W4364356857 hasConceptScore W4364356857C77637269 @default.
- W4364356857 hasFunder F4320322725 @default.
- W4364356857 hasFunder F4320322922 @default.
- W4364356857 hasFunder F4320336565 @default.
- W4364356857 hasLocation W43643568571 @default.
- W4364356857 hasOpenAccess W4364356857 @default.
- W4364356857 hasPrimaryLocation W43643568571 @default.