Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364361395> ?p ?o ?g. }
- W4364361395 endingPage "170867" @default.
- W4364361395 startingPage "170867" @default.
- W4364361395 abstract "The damage caused by forest fires to humans and the environment cannot be ignored. However, there are few works about the traceability of tree smoke in current time. In this paper, a new system of laser-induced breakdown spectroscopy (LIBS) combined with machine learning was developed to detect and identify the smoke from different tree species. In this new system, spectral lines of heavy elements including Fe, Sr and Ba can be observed, which, together with spectral lines of some other common elements, a total of 57 lines, are regarded as characteristic fingerprints of smoke spectra. These spectral lines are used as variables to reduce the dimensionality of the data using principal component analysis (PCA). Then, a supervised machine learning algorithm of back propagation artificial neural networks (BP-ANN) are applied to identify the source of tree smoke. The average precision rate for smoke achieved over 85%, indicating that LIBS combined with machine learning has a wide application prospect in situ online detection and identification of local forest fires." @default.
- W4364361395 created "2023-04-12" @default.
- W4364361395 creator A5008689454 @default.
- W4364361395 creator A5008911598 @default.
- W4364361395 creator A5019060901 @default.
- W4364361395 creator A5055143289 @default.
- W4364361395 creator A5083966009 @default.
- W4364361395 date "2023-07-01" @default.
- W4364361395 modified "2023-10-02" @default.
- W4364361395 title "Source tracing of tree smoke in forest fires based on laser-induced breakdown spectroscopy" @default.
- W4364361395 cites W141211433 @default.
- W4364361395 cites W1894109050 @default.
- W4364361395 cites W1966023765 @default.
- W4364361395 cites W1984672703 @default.
- W4364361395 cites W1997926507 @default.
- W4364361395 cites W2001152914 @default.
- W4364361395 cites W2009097094 @default.
- W4364361395 cites W2015042084 @default.
- W4364361395 cites W2022822200 @default.
- W4364361395 cites W2026355459 @default.
- W4364361395 cites W2040206819 @default.
- W4364361395 cites W2046740107 @default.
- W4364361395 cites W2073429076 @default.
- W4364361395 cites W2084375756 @default.
- W4364361395 cites W2084842115 @default.
- W4364361395 cites W2097521289 @default.
- W4364361395 cites W2120620624 @default.
- W4364361395 cites W2125026565 @default.
- W4364361395 cites W2174152302 @default.
- W4364361395 cites W2291256608 @default.
- W4364361395 cites W2340812225 @default.
- W4364361395 cites W2493303553 @default.
- W4364361395 cites W2515489732 @default.
- W4364361395 cites W2566626428 @default.
- W4364361395 cites W2609382435 @default.
- W4364361395 cites W2612462494 @default.
- W4364361395 cites W2773534596 @default.
- W4364361395 cites W2776944650 @default.
- W4364361395 cites W2787361415 @default.
- W4364361395 cites W2905915548 @default.
- W4364361395 cites W2938335268 @default.
- W4364361395 cites W2946188445 @default.
- W4364361395 cites W2959236235 @default.
- W4364361395 cites W2985521188 @default.
- W4364361395 cites W3013140245 @default.
- W4364361395 cites W3043111118 @default.
- W4364361395 cites W3120165179 @default.
- W4364361395 cites W3135511478 @default.
- W4364361395 cites W3139724034 @default.
- W4364361395 doi "https://doi.org/10.1016/j.ijleo.2023.170867" @default.
- W4364361395 hasPublicationYear "2023" @default.
- W4364361395 type Work @default.
- W4364361395 citedByCount "1" @default.
- W4364361395 countsByYear W43643613952023 @default.
- W4364361395 crossrefType "journal-article" @default.
- W4364361395 hasAuthorship W4364361395A5008689454 @default.
- W4364361395 hasAuthorship W4364361395A5008911598 @default.
- W4364361395 hasAuthorship W4364361395A5019060901 @default.
- W4364361395 hasAuthorship W4364361395A5055143289 @default.
- W4364361395 hasAuthorship W4364361395A5083966009 @default.
- W4364361395 hasConcept C111919701 @default.
- W4364361395 hasConcept C113174947 @default.
- W4364361395 hasConcept C115903868 @default.
- W4364361395 hasConcept C120665830 @default.
- W4364361395 hasConcept C121332964 @default.
- W4364361395 hasConcept C134306372 @default.
- W4364361395 hasConcept C138673069 @default.
- W4364361395 hasConcept C153180895 @default.
- W4364361395 hasConcept C153294291 @default.
- W4364361395 hasConcept C153876917 @default.
- W4364361395 hasConcept C154945302 @default.
- W4364361395 hasConcept C169258074 @default.
- W4364361395 hasConcept C186060115 @default.
- W4364361395 hasConcept C27438332 @default.
- W4364361395 hasConcept C32891209 @default.
- W4364361395 hasConcept C33923547 @default.
- W4364361395 hasConcept C39432304 @default.
- W4364361395 hasConcept C41008148 @default.
- W4364361395 hasConcept C50497907 @default.
- W4364361395 hasConcept C50644808 @default.
- W4364361395 hasConcept C520434653 @default.
- W4364361395 hasConcept C58874564 @default.
- W4364361395 hasConcept C62520636 @default.
- W4364361395 hasConcept C86803240 @default.
- W4364361395 hasConceptScore W4364361395C111919701 @default.
- W4364361395 hasConceptScore W4364361395C113174947 @default.
- W4364361395 hasConceptScore W4364361395C115903868 @default.
- W4364361395 hasConceptScore W4364361395C120665830 @default.
- W4364361395 hasConceptScore W4364361395C121332964 @default.
- W4364361395 hasConceptScore W4364361395C134306372 @default.
- W4364361395 hasConceptScore W4364361395C138673069 @default.
- W4364361395 hasConceptScore W4364361395C153180895 @default.
- W4364361395 hasConceptScore W4364361395C153294291 @default.
- W4364361395 hasConceptScore W4364361395C153876917 @default.
- W4364361395 hasConceptScore W4364361395C154945302 @default.
- W4364361395 hasConceptScore W4364361395C169258074 @default.
- W4364361395 hasConceptScore W4364361395C186060115 @default.
- W4364361395 hasConceptScore W4364361395C27438332 @default.