Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364375188> ?p ?o ?g. }
- W4364375188 endingPage "129493" @default.
- W4364375188 startingPage "129493" @default.
- W4364375188 abstract "Stochastic conditional geomodelling requires effective integration of geological patterns and various types of data, which is crucial but challenging. To address this, we propose a deep-learning framework (GANSim-surrogate) for conditioning geomodels to static well facies data, facies probability maps, and non-spatial global features, as well as dynamic time-dependent pressure or flow rate data observed at wells. The framework consists of a Convolutional Neural Network (CNN) generator trained from GANSim (a Generative Adversarial Network-based geomodelling simulation approach), a CNN-based surrogate, and options for searching appropriate input latent vectors for the generator. The four search methods investigated are Markov Chain Monte Carlo, Iterative Ensemble Smoother, gradient descent, and gradual deformation. The framework is validated with channelized reservoirs. First, a generator is trained using GANSim to generate geological facies models; in addition, a flow simulation surrogate is trained using a physics-informed approach. Then, given well facies data, facies probability maps, global facies proportions, and dynamic bottomhole pressure data (BHP), the trained generator takes the first three static conditioning data and a latent vector as inputs and produces a random realistic facies model conditioned to the three static data. To condition to the dynamic data, the produced facies model is converted to permeability property and mapped to BHP data by the trained surrogate. Finally, the mismatch between the surrogate-produced and the observed BHP data is minimized to obtain appropriate input latent vectors which are further mapped into appropriate facies models through the generator. These facies models prove to be realistic and consistent with all of the conditioning data, and the framework is computationally efficient." @default.
- W4364375188 created "2023-04-12" @default.
- W4364375188 creator A5001908403 @default.
- W4364375188 creator A5013088513 @default.
- W4364375188 creator A5037830488 @default.
- W4364375188 creator A5090508999 @default.
- W4364375188 date "2023-05-01" @default.
- W4364375188 modified "2023-09-26" @default.
- W4364375188 title "GANSim-surrogate: An integrated framework for stochastic conditional geomodelling" @default.
- W4364375188 cites W132239896 @default.
- W4364375188 cites W1840044891 @default.
- W4364375188 cites W1964718154 @default.
- W4364375188 cites W1976584025 @default.
- W4364375188 cites W1990256482 @default.
- W4364375188 cites W2028055401 @default.
- W4364375188 cites W2066021483 @default.
- W4364375188 cites W2079855895 @default.
- W4364375188 cites W2079927384 @default.
- W4364375188 cites W2117487677 @default.
- W4364375188 cites W2494888544 @default.
- W4364375188 cites W2557814785 @default.
- W4364375188 cites W2896999814 @default.
- W4364375188 cites W2899283552 @default.
- W4364375188 cites W2906141267 @default.
- W4364375188 cites W2918521018 @default.
- W4364375188 cites W2948893225 @default.
- W4364375188 cites W2962793481 @default.
- W4364375188 cites W2987357275 @default.
- W4364375188 cites W2999802832 @default.
- W4364375188 cites W3045327624 @default.
- W4364375188 cites W3098024297 @default.
- W4364375188 cites W3103029122 @default.
- W4364375188 cites W3104994177 @default.
- W4364375188 cites W3107209249 @default.
- W4364375188 cites W3109916085 @default.
- W4364375188 cites W3123551284 @default.
- W4364375188 cites W3163993681 @default.
- W4364375188 cites W3213866119 @default.
- W4364375188 cites W4211024465 @default.
- W4364375188 cites W4229460528 @default.
- W4364375188 cites W4252656192 @default.
- W4364375188 cites W4281568394 @default.
- W4364375188 cites W4283017325 @default.
- W4364375188 cites W4285093386 @default.
- W4364375188 cites W79302934 @default.
- W4364375188 doi "https://doi.org/10.1016/j.jhydrol.2023.129493" @default.
- W4364375188 hasPublicationYear "2023" @default.
- W4364375188 type Work @default.
- W4364375188 citedByCount "0" @default.
- W4364375188 crossrefType "journal-article" @default.
- W4364375188 hasAuthorship W4364375188A5001908403 @default.
- W4364375188 hasAuthorship W4364375188A5013088513 @default.
- W4364375188 hasAuthorship W4364375188A5037830488 @default.
- W4364375188 hasAuthorship W4364375188A5090508999 @default.
- W4364375188 hasConcept C109007969 @default.
- W4364375188 hasConcept C11413529 @default.
- W4364375188 hasConcept C119857082 @default.
- W4364375188 hasConcept C121332964 @default.
- W4364375188 hasConcept C127313418 @default.
- W4364375188 hasConcept C131675550 @default.
- W4364375188 hasConcept C146588470 @default.
- W4364375188 hasConcept C151730666 @default.
- W4364375188 hasConcept C154945302 @default.
- W4364375188 hasConcept C163258240 @default.
- W4364375188 hasConcept C197298091 @default.
- W4364375188 hasConcept C199360897 @default.
- W4364375188 hasConcept C2780992000 @default.
- W4364375188 hasConcept C41008148 @default.
- W4364375188 hasConcept C62520636 @default.
- W4364375188 hasConceptScore W4364375188C109007969 @default.
- W4364375188 hasConceptScore W4364375188C11413529 @default.
- W4364375188 hasConceptScore W4364375188C119857082 @default.
- W4364375188 hasConceptScore W4364375188C121332964 @default.
- W4364375188 hasConceptScore W4364375188C127313418 @default.
- W4364375188 hasConceptScore W4364375188C131675550 @default.
- W4364375188 hasConceptScore W4364375188C146588470 @default.
- W4364375188 hasConceptScore W4364375188C151730666 @default.
- W4364375188 hasConceptScore W4364375188C154945302 @default.
- W4364375188 hasConceptScore W4364375188C163258240 @default.
- W4364375188 hasConceptScore W4364375188C197298091 @default.
- W4364375188 hasConceptScore W4364375188C199360897 @default.
- W4364375188 hasConceptScore W4364375188C2780992000 @default.
- W4364375188 hasConceptScore W4364375188C41008148 @default.
- W4364375188 hasConceptScore W4364375188C62520636 @default.
- W4364375188 hasLocation W43643751881 @default.
- W4364375188 hasOpenAccess W4364375188 @default.
- W4364375188 hasPrimaryLocation W43643751881 @default.
- W4364375188 hasRelatedWork W2390459957 @default.
- W4364375188 hasRelatedWork W2961085424 @default.
- W4364375188 hasRelatedWork W3046775127 @default.
- W4364375188 hasRelatedWork W3170094116 @default.
- W4364375188 hasRelatedWork W4205958290 @default.
- W4364375188 hasRelatedWork W4285260836 @default.
- W4364375188 hasRelatedWork W4286629047 @default.
- W4364375188 hasRelatedWork W4306321456 @default.
- W4364375188 hasRelatedWork W4306674287 @default.
- W4364375188 hasRelatedWork W4224009465 @default.
- W4364375188 hasVolume "620" @default.