Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364378939> ?p ?o ?g. }
- W4364378939 endingPage "e46599" @default.
- W4364378939 startingPage "e46599" @default.
- W4364378939 abstract "Background Large language models exhibiting human-level performance in specialized tasks are emerging; examples include Generative Pretrained Transformer 3.5, which underlies the processing of ChatGPT. Rigorous trials are required to understand the capabilities of emerging technology, so that innovation can be directed to benefit patients and practitioners. Objective Here, we evaluated the strengths and weaknesses of ChatGPT in primary care using the Membership of the Royal College of General Practitioners Applied Knowledge Test (AKT) as a medium. Methods AKT questions were sourced from a web-based question bank and 2 AKT practice papers. In total, 674 unique AKT questions were inputted to ChatGPT, with the model’s answers recorded and compared to correct answers provided by the Royal College of General Practitioners. Each question was inputted twice in separate ChatGPT sessions, with answers on repeated trials compared to gauge consistency. Subject difficulty was gauged by referring to examiners’ reports from 2018 to 2022. Novel explanations from ChatGPT—defined as information provided that was not inputted within the question or multiple answer choices—were recorded. Performance was analyzed with respect to subject, difficulty, question source, and novel model outputs to explore ChatGPT’s strengths and weaknesses. Results Average overall performance of ChatGPT was 60.17%, which is below the mean passing mark in the last 2 years (70.42%). Accuracy differed between sources (P=.04 and .06). ChatGPT’s performance varied with subject category (P=.02 and .02), but variation did not correlate with difficulty (Spearman ρ=–0.241 and –0.238; P=.19 and .20). The proclivity of ChatGPT to provide novel explanations did not affect accuracy (P>.99 and .23). Conclusions Large language models are approaching human expert–level performance, although further development is required to match the performance of qualified primary care physicians in the AKT. Validated high-performance models may serve as assistants or autonomous clinical tools to ameliorate the general practice workforce crisis." @default.
- W4364378939 created "2023-04-12" @default.
- W4364378939 creator A5018942914 @default.
- W4364378939 creator A5022490731 @default.
- W4364378939 creator A5026048265 @default.
- W4364378939 creator A5051994115 @default.
- W4364378939 creator A5059340950 @default.
- W4364378939 creator A5061973612 @default.
- W4364378939 creator A5082982563 @default.
- W4364378939 date "2023-04-21" @default.
- W4364378939 modified "2023-10-05" @default.
- W4364378939 title "Trialling a Large Language Model (ChatGPT) in General Practice With the Applied Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in Primary Care" @default.
- W4364378939 cites W2595780402 @default.
- W4364378939 cites W2736147322 @default.
- W4364378939 cites W2905810301 @default.
- W4364378939 cites W2986532750 @default.
- W4364378939 cites W3021876200 @default.
- W4364378939 cites W3028484854 @default.
- W4364378939 cites W3028781881 @default.
- W4364378939 cites W3122379149 @default.
- W4364378939 cites W3125170355 @default.
- W4364378939 cites W3140124691 @default.
- W4364378939 cites W3195560583 @default.
- W4364378939 cites W4206310419 @default.
- W4364378939 cites W4210457441 @default.
- W4364378939 cites W4212875148 @default.
- W4364378939 cites W4226065102 @default.
- W4364378939 cites W4285719527 @default.
- W4364378939 cites W4294898043 @default.
- W4364378939 cites W4307079201 @default.
- W4364378939 cites W4313197536 @default.
- W4364378939 cites W4317545824 @default.
- W4364378939 cites W4317840265 @default.
- W4364378939 cites W4318765555 @default.
- W4364378939 cites W4319232663 @default.
- W4364378939 cites W4319460874 @default.
- W4364378939 cites W4319662928 @default.
- W4364378939 doi "https://doi.org/10.2196/46599" @default.
- W4364378939 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37083633" @default.
- W4364378939 hasPublicationYear "2023" @default.
- W4364378939 type Work @default.
- W4364378939 citedByCount "24" @default.
- W4364378939 countsByYear W43643789392023 @default.
- W4364378939 crossrefType "journal-article" @default.
- W4364378939 hasAuthorship W4364378939A5018942914 @default.
- W4364378939 hasAuthorship W4364378939A5022490731 @default.
- W4364378939 hasAuthorship W4364378939A5026048265 @default.
- W4364378939 hasAuthorship W4364378939A5051994115 @default.
- W4364378939 hasAuthorship W4364378939A5059340950 @default.
- W4364378939 hasAuthorship W4364378939A5061973612 @default.
- W4364378939 hasAuthorship W4364378939A5082982563 @default.
- W4364378939 hasBestOaLocation W43643789391 @default.
- W4364378939 hasConcept C105795698 @default.
- W4364378939 hasConcept C136764020 @default.
- W4364378939 hasConcept C151730666 @default.
- W4364378939 hasConcept C154945302 @default.
- W4364378939 hasConcept C15744967 @default.
- W4364378939 hasConcept C23131810 @default.
- W4364378939 hasConcept C2776436953 @default.
- W4364378939 hasConcept C2777267654 @default.
- W4364378939 hasConcept C2777855551 @default.
- W4364378939 hasConcept C33923547 @default.
- W4364378939 hasConcept C39890363 @default.
- W4364378939 hasConcept C41008148 @default.
- W4364378939 hasConcept C44291984 @default.
- W4364378939 hasConcept C63882131 @default.
- W4364378939 hasConcept C77805123 @default.
- W4364378939 hasConcept C86803240 @default.
- W4364378939 hasConceptScore W4364378939C105795698 @default.
- W4364378939 hasConceptScore W4364378939C136764020 @default.
- W4364378939 hasConceptScore W4364378939C151730666 @default.
- W4364378939 hasConceptScore W4364378939C154945302 @default.
- W4364378939 hasConceptScore W4364378939C15744967 @default.
- W4364378939 hasConceptScore W4364378939C23131810 @default.
- W4364378939 hasConceptScore W4364378939C2776436953 @default.
- W4364378939 hasConceptScore W4364378939C2777267654 @default.
- W4364378939 hasConceptScore W4364378939C2777855551 @default.
- W4364378939 hasConceptScore W4364378939C33923547 @default.
- W4364378939 hasConceptScore W4364378939C39890363 @default.
- W4364378939 hasConceptScore W4364378939C41008148 @default.
- W4364378939 hasConceptScore W4364378939C44291984 @default.
- W4364378939 hasConceptScore W4364378939C63882131 @default.
- W4364378939 hasConceptScore W4364378939C77805123 @default.
- W4364378939 hasConceptScore W4364378939C86803240 @default.
- W4364378939 hasLocation W43643789391 @default.
- W4364378939 hasLocation W43643789392 @default.
- W4364378939 hasLocation W43643789393 @default.
- W4364378939 hasLocation W43643789394 @default.
- W4364378939 hasOpenAccess W4364378939 @default.
- W4364378939 hasPrimaryLocation W43643789391 @default.
- W4364378939 hasRelatedWork W1485461900 @default.
- W4364378939 hasRelatedWork W1594455022 @default.
- W4364378939 hasRelatedWork W2351286801 @default.
- W4364378939 hasRelatedWork W2354866896 @default.
- W4364378939 hasRelatedWork W2356380379 @default.
- W4364378939 hasRelatedWork W2361152157 @default.
- W4364378939 hasRelatedWork W2748952813 @default.
- W4364378939 hasRelatedWork W2805599431 @default.