Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364380999> ?p ?o ?g. }
- W4364380999 endingPage "11" @default.
- W4364380999 startingPage "1" @default.
- W4364380999 abstract "Accurate construction cost estimation is crucial to completing projects within the planned timeframe and expenditure. The estimation process depends on multiple variables maintaining complex relationships between themselves and the target cost. As a result, an in-depth analysis from an experienced construction consultant is required to estimate construction costs accurately. Machine learning (ML) technology can learn from previous data, which is equivalent to human experience. Many project-specific ML models estimate the construction cost, which misses the generalizability. This paper addresses the gap and designs, develops, implements, and analyzes a deep learning (DL) based novel framework that maps 94.67% of the independent variables with a mean average percentage error (MAPE) of 11.60%. The proposed framework is not limited to any specific project. It estimates the construction cost of similar projects, further validated by an innovative estimator validation unit." @default.
- W4364380999 created "2023-04-12" @default.
- W4364380999 creator A5035294706 @default.
- W4364380999 creator A5055628089 @default.
- W4364380999 date "2023-04-11" @default.
- W4364380999 modified "2023-09-30" @default.
- W4364380999 title "A construction cost estimation framework using DNN and validation unit" @default.
- W4364380999 cites W1966407739 @default.
- W4364380999 cites W1999893023 @default.
- W4364380999 cites W2008056655 @default.
- W4364380999 cites W2020459985 @default.
- W4364380999 cites W2023312480 @default.
- W4364380999 cites W2034203008 @default.
- W4364380999 cites W2036306002 @default.
- W4364380999 cites W2045120122 @default.
- W4364380999 cites W2079847520 @default.
- W4364380999 cites W2091187902 @default.
- W4364380999 cites W2098584485 @default.
- W4364380999 cites W2102148524 @default.
- W4364380999 cites W2125993116 @default.
- W4364380999 cites W2140541318 @default.
- W4364380999 cites W2150536746 @default.
- W4364380999 cites W2169670950 @default.
- W4364380999 cites W2332093660 @default.
- W4364380999 cites W2341812722 @default.
- W4364380999 cites W2418037503 @default.
- W4364380999 cites W2490908641 @default.
- W4364380999 cites W2492294785 @default.
- W4364380999 cites W2571487773 @default.
- W4364380999 cites W2745595671 @default.
- W4364380999 cites W2746680615 @default.
- W4364380999 cites W2752463259 @default.
- W4364380999 cites W2794778778 @default.
- W4364380999 cites W2894295805 @default.
- W4364380999 cites W2935023030 @default.
- W4364380999 cites W2974685136 @default.
- W4364380999 cites W2991439194 @default.
- W4364380999 cites W3029951939 @default.
- W4364380999 cites W3086242700 @default.
- W4364380999 cites W3093894500 @default.
- W4364380999 cites W3096140803 @default.
- W4364380999 cites W3114779637 @default.
- W4364380999 cites W3196029727 @default.
- W4364380999 cites W3198194473 @default.
- W4364380999 cites W3198416367 @default.
- W4364380999 cites W3208458519 @default.
- W4364380999 cites W3211683578 @default.
- W4364380999 cites W3215371923 @default.
- W4364380999 cites W3217260576 @default.
- W4364380999 cites W4200227359 @default.
- W4364380999 cites W4205141817 @default.
- W4364380999 cites W4206794432 @default.
- W4364380999 cites W4210481194 @default.
- W4364380999 cites W4212791338 @default.
- W4364380999 cites W4214744529 @default.
- W4364380999 cites W4220710050 @default.
- W4364380999 cites W4220877543 @default.
- W4364380999 cites W4281696066 @default.
- W4364380999 cites W4283392904 @default.
- W4364380999 cites W4289947015 @default.
- W4364380999 doi "https://doi.org/10.1080/09613218.2023.2196388" @default.
- W4364380999 hasPublicationYear "2023" @default.
- W4364380999 type Work @default.
- W4364380999 citedByCount "0" @default.
- W4364380999 crossrefType "journal-article" @default.
- W4364380999 hasAuthorship W4364380999A5035294706 @default.
- W4364380999 hasAuthorship W4364380999A5055628089 @default.
- W4364380999 hasBestOaLocation W43643809991 @default.
- W4364380999 hasConcept C105795698 @default.
- W4364380999 hasConcept C111919701 @default.
- W4364380999 hasConcept C119857082 @default.
- W4364380999 hasConcept C122637931 @default.
- W4364380999 hasConcept C127413603 @default.
- W4364380999 hasConcept C145420912 @default.
- W4364380999 hasConcept C150217764 @default.
- W4364380999 hasConcept C185429906 @default.
- W4364380999 hasConcept C201995342 @default.
- W4364380999 hasConcept C27158222 @default.
- W4364380999 hasConcept C33923547 @default.
- W4364380999 hasConcept C41008148 @default.
- W4364380999 hasConcept C50644808 @default.
- W4364380999 hasConcept C93983250 @default.
- W4364380999 hasConcept C96250715 @default.
- W4364380999 hasConcept C98045186 @default.
- W4364380999 hasConceptScore W4364380999C105795698 @default.
- W4364380999 hasConceptScore W4364380999C111919701 @default.
- W4364380999 hasConceptScore W4364380999C119857082 @default.
- W4364380999 hasConceptScore W4364380999C122637931 @default.
- W4364380999 hasConceptScore W4364380999C127413603 @default.
- W4364380999 hasConceptScore W4364380999C145420912 @default.
- W4364380999 hasConceptScore W4364380999C150217764 @default.
- W4364380999 hasConceptScore W4364380999C185429906 @default.
- W4364380999 hasConceptScore W4364380999C201995342 @default.
- W4364380999 hasConceptScore W4364380999C27158222 @default.
- W4364380999 hasConceptScore W4364380999C33923547 @default.
- W4364380999 hasConceptScore W4364380999C41008148 @default.
- W4364380999 hasConceptScore W4364380999C50644808 @default.
- W4364380999 hasConceptScore W4364380999C93983250 @default.