Matches in SemOpenAlex for { <https://semopenalex.org/work/W4364381355> ?p ?o ?g. }
- W4364381355 endingPage "133821" @default.
- W4364381355 startingPage "133821" @default.
- W4364381355 abstract "The air has a direct impact on both life and health. In most situations, the damage caused by excessive inhalation of carbon monoxide (CO) is irreversible. To prevent further catastrophes, the monitoring of CO concentrations deserves our attention and effective action. According to the available research, electronic nose (E-nose) consistently exhibits great performance in additional sectors while offering fresh approaches to problem-solving. However, the neural networks currently used in E-nose are still somewhat constrained, and the time-series dataset cannot be processed to its fullest potential by using conventional neural networks. In this paper, we propose an improved temporal convolutional network (TCN) to complete reliable training on high-dimensional time series datasets. GL-TCN exhibits a better fit even after decreasing the data, when compared to recurrent neural networks (RNN), long short-term memory (LSTM), TCN and gate recurrent unit (GRU)." @default.
- W4364381355 created "2023-04-12" @default.
- W4364381355 creator A5002312509 @default.
- W4364381355 creator A5033930106 @default.
- W4364381355 creator A5049461935 @default.
- W4364381355 creator A5064752243 @default.
- W4364381355 creator A5082020327 @default.
- W4364381355 creator A5087637729 @default.
- W4364381355 date "2023-07-01" @default.
- W4364381355 modified "2023-10-16" @default.
- W4364381355 title "An electronic nose for CO concentration prediction based on GL-TCN" @default.
- W4364381355 cites W1983631402 @default.
- W4364381355 cites W2008300604 @default.
- W4364381355 cites W2220894119 @default.
- W4364381355 cites W2604847698 @default.
- W4364381355 cites W2775832893 @default.
- W4364381355 cites W2789364533 @default.
- W4364381355 cites W2793389809 @default.
- W4364381355 cites W2794880881 @default.
- W4364381355 cites W2903925963 @default.
- W4364381355 cites W2908503167 @default.
- W4364381355 cites W2970984124 @default.
- W4364381355 cites W2980994438 @default.
- W4364381355 cites W2994161396 @default.
- W4364381355 cites W2997682513 @default.
- W4364381355 cites W2998004460 @default.
- W4364381355 cites W3005400919 @default.
- W4364381355 cites W3012958665 @default.
- W4364381355 cites W3017058541 @default.
- W4364381355 cites W3024836211 @default.
- W4364381355 cites W3036363354 @default.
- W4364381355 cites W3041665714 @default.
- W4364381355 cites W3081625936 @default.
- W4364381355 cites W3082919371 @default.
- W4364381355 cites W3090516321 @default.
- W4364381355 cites W3122095142 @default.
- W4364381355 cites W3128518631 @default.
- W4364381355 cites W3136908339 @default.
- W4364381355 cites W3172621685 @default.
- W4364381355 cites W3174188222 @default.
- W4364381355 cites W3213777593 @default.
- W4364381355 cites W4205723671 @default.
- W4364381355 cites W4210814004 @default.
- W4364381355 doi "https://doi.org/10.1016/j.snb.2023.133821" @default.
- W4364381355 hasPublicationYear "2023" @default.
- W4364381355 type Work @default.
- W4364381355 citedByCount "2" @default.
- W4364381355 countsByYear W43643813552023 @default.
- W4364381355 crossrefType "journal-article" @default.
- W4364381355 hasAuthorship W4364381355A5002312509 @default.
- W4364381355 hasAuthorship W4364381355A5033930106 @default.
- W4364381355 hasAuthorship W4364381355A5049461935 @default.
- W4364381355 hasAuthorship W4364381355A5064752243 @default.
- W4364381355 hasAuthorship W4364381355A5082020327 @default.
- W4364381355 hasAuthorship W4364381355A5087637729 @default.
- W4364381355 hasConcept C105702510 @default.
- W4364381355 hasConcept C119857082 @default.
- W4364381355 hasConcept C133488467 @default.
- W4364381355 hasConcept C143724316 @default.
- W4364381355 hasConcept C147168706 @default.
- W4364381355 hasConcept C151406439 @default.
- W4364381355 hasConcept C151730666 @default.
- W4364381355 hasConcept C154945302 @default.
- W4364381355 hasConcept C161790260 @default.
- W4364381355 hasConcept C185592680 @default.
- W4364381355 hasConcept C23895516 @default.
- W4364381355 hasConcept C2778311950 @default.
- W4364381355 hasConcept C41008148 @default.
- W4364381355 hasConcept C50644808 @default.
- W4364381355 hasConcept C512735826 @default.
- W4364381355 hasConcept C55493867 @default.
- W4364381355 hasConcept C71924100 @default.
- W4364381355 hasConcept C81363708 @default.
- W4364381355 hasConcept C86803240 @default.
- W4364381355 hasConceptScore W4364381355C105702510 @default.
- W4364381355 hasConceptScore W4364381355C119857082 @default.
- W4364381355 hasConceptScore W4364381355C133488467 @default.
- W4364381355 hasConceptScore W4364381355C143724316 @default.
- W4364381355 hasConceptScore W4364381355C147168706 @default.
- W4364381355 hasConceptScore W4364381355C151406439 @default.
- W4364381355 hasConceptScore W4364381355C151730666 @default.
- W4364381355 hasConceptScore W4364381355C154945302 @default.
- W4364381355 hasConceptScore W4364381355C161790260 @default.
- W4364381355 hasConceptScore W4364381355C185592680 @default.
- W4364381355 hasConceptScore W4364381355C23895516 @default.
- W4364381355 hasConceptScore W4364381355C2778311950 @default.
- W4364381355 hasConceptScore W4364381355C41008148 @default.
- W4364381355 hasConceptScore W4364381355C50644808 @default.
- W4364381355 hasConceptScore W4364381355C512735826 @default.
- W4364381355 hasConceptScore W4364381355C55493867 @default.
- W4364381355 hasConceptScore W4364381355C71924100 @default.
- W4364381355 hasConceptScore W4364381355C81363708 @default.
- W4364381355 hasConceptScore W4364381355C86803240 @default.
- W4364381355 hasFunder F4320321001 @default.
- W4364381355 hasFunder F4320333335 @default.
- W4364381355 hasLocation W43643813551 @default.
- W4364381355 hasOpenAccess W4364381355 @default.
- W4364381355 hasPrimaryLocation W43643813551 @default.